• MARS Website
  • Core API
  • SmartOpenHamburg API
  • Model Components API
  • Common API
Show / Hide Table of Contents
  • Mars.Common
    • GeoHash
    • GeoHashDecoder
    • GeohashDecodeResult
    • GeoHashEncoder
    • GeoHashPrecision
    • Hyperrectangle
    • InputHashHelper
    • PositionHelper
  • Mars.Common.Collections
    • BinaryArrayHeap<T>
    • DoubleBits
    • FibonacciHeap<T, TKey>
    • FibonacciHeapDoubleKey<T>
    • FibonacciHeapNode<T, TKey>
    • FibonacciHeapNodeDoubleKey<T>
    • HeapNode
    • IntervalSize
    • K2DTree<T>
    • K2dTreeNode<T>
    • KdTree
    • KdTree<T>
    • KdTreeBase<TNode>
    • KdTreeNode
    • KdTreeNode<T>
    • KdTreeNodeBase<TNode>
    • KdTreeNodeCollection<TNode>
    • KdTreeNodeList<T>
    • Key
    • Node<T>
    • NodeBase<T>
    • NodeDataContainer<T>
    • NodeDistance<TNode>
    • QuadTree<T>
    • Root<T>
    • TreeDataContainer<T>
  • Mars.Common.Collections.CritBit
    • ICritBitTree<TValue>
  • Mars.Common.Collections.Graph
    • EdgeData
    • GraphData
    • GraphSerializer
    • ISpatialGraph
    • KeyContainer
    • NodeData
    • SpatialGraph
    • SpatialGraphHelper
  • Mars.Common.Collections.Graph.Algorithms
    • AStar
    • CompressedPathDatabase
    • ContractionSearch
    • DepthLimitedTraversal
  • Mars.Common.Collections.Graph.Helper
    • INodeFinder
    • KdTreeNodeFinder
    • RunLengthEncoder
  • Mars.Common.Collections.KNNGraph
    • DefaultRandomGenerator
    • DistanceUtils
    • EventSources
    • EventSources.GraphBuildEventSource
    • EventSources.GraphSearchEventSource
    • IProgressReporter
    • IProvideRandomValues
    • KnnGraph<TItem, TDistance>
    • KnnGraph<TItem, TDistance>.KnnSearchResult
    • KnnGraph<TItem, TDistance>.Parameters
    • Node
    • ReverseComparer<T>
    • ReverseComparerExtensions
    • SelectionKind
    • TravelingCosts<TItem, TDistance>
  • Mars.Common.Compat
    • FormatDecoderAttribute
    • FormatEncoderAttribute
    • FormatHandlerAttribute
    • IntegerAttribute
    • NegativeIntegerAttribute
    • NonnegativeIntegerAttribute
    • NonpositiveIntegerAttribute
    • PositiveIntegerAttribute
  • Mars.Common.Data
    • DomainDataImporter
  • Mars.Common.Data.Providers
    • AscDataProvider
    • GeoJsonFeatureCollectionConverter
    • GeoJsonFeatureConverter
    • GeoJsonHelper
    • GeometryDataProvider
    • GraphMlProvider
    • HttpDataProvider
    • IDataProvider<TInput>
    • JsonFileDataProvider
    • JsonTextDataProvider
    • XmlFileDataProvider
    • XmlTextDataProvider
  • Mars.Common.Exceptions
    • DimensionMismatchException
    • ParseException
  • Mars.Common.IO
    • ExtensionMethods
    • FileClientUtils
    • FileKeys
    • HttpClientUtils
    • ObjectSerialize
    • Serializer
    • SerializerCompression
    • SparseFormat
    • SparseReader
    • SparseWriter
  • Mars.Common.IO.Attributes
    • SerializationBinderAttribute
    • SurrogateSelectorAttribute
  • Mars.Common.IO.Console
    • ChildProgressBar
    • IProgressBar
    • ProgressBar
    • ProgressBarBase
    • ProgressBarHeight
    • ProgressBarOptions
    • ProgressBarSimple
  • Mars.Common.IO.Csv
    • CsvAnalyzer
    • CsvReader
    • CsvReader.RecordEnumerator
    • CsvWriter
    • MissingFieldAction
    • ParseErrorAction
    • ValueTrimmingOptions
  • Mars.Common.IO.Events
    • ParseErrorEventArgs
  • Mars.Common.IO.Exceptions
    • MalformedCsvException
    • MissingFieldCsvException
  • Mars.Common.IO.Mapped
    • Context
    • DefaultArrayFactory
    • Extensions
    • IArrayFactory
    • ISerializableToStream
    • MappedAccessor<T>
    • MemoryMap
    • MemoryMap.CreateAccessorFunc<T>
    • MemoryMap.ReadFromDelegate<T>
    • MemoryMap.WriteToDelegate<T>
    • MemoryMapDelegates
    • MemoryMapDelegates.CreateAccessorFunc<T>
    • MemoryMapStream
  • Mars.Common.IO.Mapped.Accessors
    • MappedAccessorByte
    • MappedAccessorDouble
    • MappedAccessorInt16
    • MappedAccessorInt32
    • MappedAccessorInt64
    • MappedAccessorSingle
    • MappedAccessorUInt16
    • MappedAccessorUInt32
    • MappedAccessorUInt64
    • MappedAccessorVariable<T>
  • Mars.Common.IO.Mapped.Arrays
    • Array<T>
    • ArrayBase<T>
    • ArrayProfile
    • MappedArray<TMapped, T>
    • MappedArray<TMapped, T>.MapFrom
    • MappedArray<TMapped, T>.MapTo
    • MemoryArray<T>
    • VariableArray<T>
  • Mars.Common.IO.Mapped.Collections
    • MemoryBackedDictionary<TKey, TValue>
    • MemoryBackedList<T>
  • Mars.Common.IO.Mapped.Indexes
    • Index<T>
  • Mars.Common.IO.Mapped.Streams
    • CappedStream
  • Mars.Common.Socket
    • ByteOrder
    • CloseEventArgs
    • CloseStatusCode
    • CompressionMethod
    • ErrorEventArgs
    • Ext
    • MessageEventArgs
    • WebSocket
    • WebSocketException
    • WebSocketState
  • Mars.Common.Socket.Server
    • IWebSocketSession
    • WebHeaderCollection
    • WebSocketBehavior
    • WebSocketContext
    • WebSocketServer
    • WebSocketServiceHost
    • WebSocketServiceManager
    • WebSocketSessionManager
  • Mars.Numerics
    • Classes
    • Combinatorics
    • Constants
    • Distance
    • Elementwise
    • Jagged
    • MathematicsException
    • MathHelper
    • Matrix
    • MatrixOrder
    • MatrixType
    • Norm
    • Sort
    • Sorting
    • Sparse
    • Sparse<T>
    • Tools
    • Vector
    • VectorHelper
    • VectorType
  • Mars.Numerics.Comparers
    • ArrayComparer<T>
    • ComparerDirection
    • CustomComparer<T>
    • ElementComparer
    • ElementComparer<T>
    • GeneralComparer
    • StableComparer<T>
  • Mars.Numerics.Distances
    • Angular
    • Chebyshev
    • Cosine
    • Dirac<T>
    • Euclidean
    • Hamming
    • Hamming<T>
    • Haversine
    • Jaccard
    • Jaccard<T>
    • Kulczynski
    • Levenshtein
    • Levenshtein<T>
    • Manhattan
    • Matching
    • Minkowski
    • SquareEuclidean
    • Vincenty
    • Vincenty.Ellipsoid
  • Mars.Numerics.Distances.Base
    • IDistance<T>
    • IDistance<TFirst, TSecond>
    • IMetric<T>
    • ISimilarity<T, TU>
    • ISimilarity<T>
  • Mars.Numerics.Exceptions
    • DimensionMismatchException
    • NonPositiveDefiniteMatrixException
    • SingularMatrixException
  • Mars.Numerics.Formats
    • DefaultMatrixFormatProvider
    • IMatrixFormatProvider
    • MatrixFormatProviderBase
    • MatrixFormatter
    • OctaveMatrixFormatProvider
  • Mars.Numerics.Ranges
    • ByteRange
    • DoubleRange
    • FloatRange
    • IntRange
    • IRange<T>
  • Mars.Numerics.Statistics
    • ConstValueDistribution<T>
    • Distribution<T>
    • FastGaussianDistributionD
    • FastGaussianDistributionF
    • IDistribution
    • UniformDiscreteDistribution
    • UniformDistributionD
    • UniformDistributionF
  • Mars.Numerics.Statistics.Base
    • BinarySearch
    • DistributionBase
    • ISampleableDistribution<TObservations>
    • IUnivariateDistribution
    • IUnivariateDistribution<TObservation>
    • UnivariateDiscreteDistribution

Class KdTree<T>

K-dimensional tree.
Inheritance
System.Object
Mars.Common.Core.Collections.SimpleTree.BinaryTree<KdTreeNode<T>>
KdTreeBase<KdTreeNode<T>>
KdTree<T>
Implements
System.Collections.Generic.IEnumerable<KdTreeNode<T>>
System.Collections.IEnumerable
Inherited Members
KdTreeBase<KdTreeNode<T>>.Dimensions
KdTreeBase<KdTreeNode<T>>.Distance
KdTreeBase<KdTreeNode<T>>.Count
KdTreeBase<KdTreeNode<T>>.Leaves
KdTreeBase<KdTreeNode<T>>.Nearest(Position, Double, Int32, Func<KdTreeNode<T>, Boolean>)
KdTreeBase<KdTreeNode<T>>.Nearest(Double[], Double, Int32, Func<KdTreeNode<T>, Boolean>)
KdTreeBase<KdTreeNode<T>>.Nearest(Double[], Double, Func<KdTreeNode<T>, Boolean>)
KdTreeBase<KdTreeNode<T>>.Nearest(Double[], Int32, Func<KdTreeNode<T>, Boolean>)
KdTreeBase<KdTreeNode<T>>.Nearest(Double[])
KdTreeBase<KdTreeNode<T>>.Nearest(Double[], Double, Func<KdTreeNode<T>, Boolean>)
KdTreeBase<KdTreeNode<T>>.Nearest<T1>(Double[], Double, Int32, Func<KdTreeNode<T>, T1, Boolean>, T1)
KdTreeBase<KdTreeNode<T>>.Nearest<T1, T2>(Double[], Double, Int32, Func<KdTreeNode<T>, T1, T2, Boolean>, T1, T2)
KdTreeBase<KdTreeNode<T>>.Nearest<T1, T2, T3>(Double[], Double, Int32, Func<KdTreeNode<T>, T1, T2, T3, Boolean>, T1, T2, T3)
KdTreeBase<KdTreeNode<T>>.ApproximateNearest(Double[], Int32, Double)
KdTreeBase<KdTreeNode<T>>.ApproximateNearest(Double[], Double, Double)
KdTreeBase<KdTreeNode<T>>.ApproximateNearest(Double[], Double)
KdTreeBase<KdTreeNode<T>>.ApproximateNearest(Double[], Int32, Int32)
KdTreeBase<KdTreeNode<T>>.ApproximateNearest(Double[], Int32)
KdTreeBase<KdTreeNode<T>>.InsideRegion(Hyperrectangle)
KdTreeBase<KdTreeNode<T>>.Clear()
KdTreeBase<KdTreeNode<T>>.CopyTo(KdTreeNode<T>[], Int32)
KdTreeBase<KdTreeNode<T>>.CreateRoot(Double[][], Boolean, Int32)
KdTreeBase<KdTreeNode<T>>.AddNode(Double[])
Mars.Common.Core.Collections.SimpleTree.BinaryTree<Mars.Common.Collections.KdTreeNode<T>>.Root
Mars.Common.Core.Collections.SimpleTree.BinaryTree<Mars.Common.Collections.KdTreeNode<T>>.GetEnumerator()
Mars.Common.Core.Collections.SimpleTree.BinaryTree<Mars.Common.Collections.KdTreeNode<T>>.System.Collections.IEnumerable.GetEnumerator()
Mars.Common.Core.Collections.SimpleTree.BinaryTree<Mars.Common.Collections.KdTreeNode<T>>.SerializeJson()
Mars.Common.Core.Collections.SimpleTree.BinaryTree<Mars.Common.Collections.KdTreeNode<T>>.Deserialize(System.String)
Mars.Common.Core.Collections.SimpleTree.BinaryTree<Mars.Common.Collections.KdTreeNode<T>>.Traverse(Mars.Common.Core.Collections.SimpleTree.BinaryTraversalMethod<Mars.Common.Collections.KdTreeNode<T>>)
System.Object.Equals(System.Object)
System.Object.Equals(System.Object, System.Object)
System.Object.GetHashCode()
System.Object.GetType()
System.Object.MemberwiseClone()
System.Object.ReferenceEquals(System.Object, System.Object)
System.Object.ToString()
Namespace: Mars.Common.Collections
Assembly: Mars.Common.dll
Syntax
[Serializable]
public class KdTree<T> : KdTreeBase<KdTreeNode<T>>, IEnumerable<KdTreeNode<T>>, IEnumerable
Type Parameters
Name Description
T The type of the value being stored.
Remarks

A k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

The k-d tree is a binary tree in which every node is a k-dimensional point. Every non- leaf node can be thought of as implicitly generating a splitting hyperplane that divides the space into two parts, known as half-spaces. Points to the left of this hyperplane represent the left subtree of that node and points right of the hyperplane are represented by the right subtree. The hyperplane direction is chosen in the following way: every node in the tree is associated with one of the k-dimensions, with the hyperplane perpendicular to that dimension's axis. So, for example, if for a particular split the "x" axis is chosen, all points in the subtree with a smaller "x" value than the node will appear in the left subtree and all points with larger "x" value will be in the right subtree. In such a case, the hyperplane would be set by the x-value of the point, and its normal would be the unit x-axis.

References:

  • ScienceDirect, Log-logarithmic worst-case range queries are possible in space Θ(N). Available on: https://www.sciencedirect.com/science/article/pii/0020019083900753?via%3Dihub
Examples
```csharp // This is the same example found in Wikipedia page on // k-d trees: http://en.wikipedia.org/wiki/K-d_tree // Suppose we have the following set of points: double[][] points = { new double[] { 2, 3 }, new double[] { 5, 4 }, new double[] { 9, 6 }, new double[] { 4, 7 }, new double[] { 8, 1 }, new double[] { 7, 2 }, }; // To create a tree from a set of points, we use KdTree<int> tree = KdTree.FromData<int>(points); // Now we can manually navigate the tree KdTreeNode<int> node = tree.Root.Left.Right; // Or traverse it automatically foreach (KdTreeNode<int> n in tree) { double[] location = n.Position; Assert.Equal(2, location.Length); } // Given a query point, we can also query for other // points which are near this point within a radius double[] query = new double[] { 5, 3 }; // Locate all nearby points within an euclidean distance of 1.5 // (answer should be be a single point located at position (5,4)) KdTreeNodeCollection<int> result = tree.Nearest(query, radius: 1.5); // We can also use alternate distance functions tree.Distance = Mars.Numerics.Distance.Manhattan; // And also query for a fixed number of neighbor points // (answer should be the points at (5,4), (7,2), (2,3)) KdTreeNodeCollection<int> neighbors = tree.Nearest(query, neighbors: 3); ```

Constructors

| Improve this Doc View Source

KdTree(Int32, KdTreeNode<T>, Int32, Int32)

Creates a new KdTree<T>.
Declaration
public KdTree(int dimension, KdTreeNode<T> root, int count, int leaves)
Parameters
Type Name Description
System.Int32 dimension The number of dimensions in the tree.
KdTreeNode<T> root The Root node, if already existent.
System.Int32 count The number of elements in the Root node.
System.Int32 leaves The number of leaves linked through the Root node.
Remarks

A k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

The k-d tree is a binary tree in which every node is a k-dimensional point. Every non- leaf node can be thought of as implicitly generating a splitting hyperplane that divides the space into two parts, known as half-spaces. Points to the left of this hyperplane represent the left subtree of that node and points right of the hyperplane are represented by the right subtree. The hyperplane direction is chosen in the following way: every node in the tree is associated with one of the k-dimensions, with the hyperplane perpendicular to that dimension's axis. So, for example, if for a particular split the "x" axis is chosen, all points in the subtree with a smaller "x" value than the node will appear in the left subtree and all points with larger "x" value will be in the right subtree. In such a case, the hyperplane would be set by the x-value of the point, and its normal would be the unit x-axis.

References:

  • ScienceDirect, Log-logarithmic worst-case range queries are possible in space Θ(N). Available on: https://www.sciencedirect.com/science/article/pii/0020019083900753?via%3Dihub
| Improve this Doc View Source

KdTree(Int32, KdTreeNode<T>)

Creates a new KdTree<T>.
Declaration
public KdTree(int dimension, KdTreeNode<T> root)
Parameters
Type Name Description
System.Int32 dimension The number of dimensions in the tree.
KdTreeNode<T> root The Root node, if already existent.
Remarks

A k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

The k-d tree is a binary tree in which every node is a k-dimensional point. Every non- leaf node can be thought of as implicitly generating a splitting hyperplane that divides the space into two parts, known as half-spaces. Points to the left of this hyperplane represent the left subtree of that node and points right of the hyperplane are represented by the right subtree. The hyperplane direction is chosen in the following way: every node in the tree is associated with one of the k-dimensions, with the hyperplane perpendicular to that dimension's axis. So, for example, if for a particular split the "x" axis is chosen, all points in the subtree with a smaller "x" value than the node will appear in the left subtree and all points with larger "x" value will be in the right subtree. In such a case, the hyperplane would be set by the x-value of the point, and its normal would be the unit x-axis.

References:

  • ScienceDirect, Log-logarithmic worst-case range queries are possible in space Θ(N). Available on: https://www.sciencedirect.com/science/article/pii/0020019083900753?via%3Dihub
| Improve this Doc View Source

KdTree(Int32)

Creates a new KdTree<T>.
Declaration
public KdTree(int dimensions)
Parameters
Type Name Description
System.Int32 dimensions The number of dimensions in the tree.
Remarks

A k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

The k-d tree is a binary tree in which every node is a k-dimensional point. Every non- leaf node can be thought of as implicitly generating a splitting hyperplane that divides the space into two parts, known as half-spaces. Points to the left of this hyperplane represent the left subtree of that node and points right of the hyperplane are represented by the right subtree. The hyperplane direction is chosen in the following way: every node in the tree is associated with one of the k-dimensions, with the hyperplane perpendicular to that dimension's axis. So, for example, if for a particular split the "x" axis is chosen, all points in the subtree with a smaller "x" value than the node will appear in the left subtree and all points with larger "x" value will be in the right subtree. In such a case, the hyperplane would be set by the x-value of the point, and its normal would be the unit x-axis.

References:

  • ScienceDirect, Log-logarithmic worst-case range queries are possible in space Θ(N). Available on: https://www.sciencedirect.com/science/article/pii/0020019083900753?via%3Dihub

Methods

| Improve this Doc View Source

Add(Position, T)

Adds a new Position to this tree
Declaration
public void Add(Position position, T value)
Parameters
Type Name Description
Position position A Position with respective coordinate, geospatial or not
T value The value to be inserted
Remarks

A k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

The k-d tree is a binary tree in which every node is a k-dimensional point. Every non- leaf node can be thought of as implicitly generating a splitting hyperplane that divides the space into two parts, known as half-spaces. Points to the left of this hyperplane represent the left subtree of that node and points right of the hyperplane are represented by the right subtree. The hyperplane direction is chosen in the following way: every node in the tree is associated with one of the k-dimensions, with the hyperplane perpendicular to that dimension's axis. So, for example, if for a particular split the "x" axis is chosen, all points in the subtree with a smaller "x" value than the node will appear in the left subtree and all points with larger "x" value will be in the right subtree. In such a case, the hyperplane would be set by the x-value of the point, and its normal would be the unit x-axis.

References:

  • ScienceDirect, Log-logarithmic worst-case range queries are possible in space Θ(N). Available on: https://www.sciencedirect.com/science/article/pii/0020019083900753?via%3Dihub
| Improve this Doc View Source

Add(Double[], T)

Inserts a value in the tree at the desired position.
Declaration
public void Add(double[] position, T value)
Parameters
Type Name Description
System.Double[] position A double-vector with the same number of elements as dimensions in the tree.
T value The value to be inserted.
Remarks

A k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

The k-d tree is a binary tree in which every node is a k-dimensional point. Every non- leaf node can be thought of as implicitly generating a splitting hyperplane that divides the space into two parts, known as half-spaces. Points to the left of this hyperplane represent the left subtree of that node and points right of the hyperplane are represented by the right subtree. The hyperplane direction is chosen in the following way: every node in the tree is associated with one of the k-dimensions, with the hyperplane perpendicular to that dimension's axis. So, for example, if for a particular split the "x" axis is chosen, all points in the subtree with a smaller "x" value than the node will appear in the left subtree and all points with larger "x" value will be in the right subtree. In such a case, the hyperplane would be set by the x-value of the point, and its normal would be the unit x-axis.

References:

  • ScienceDirect, Log-logarithmic worst-case range queries are possible in space Θ(N). Available on: https://www.sciencedirect.com/science/article/pii/0020019083900753?via%3Dihub
| Improve this Doc View Source

Create(Double[][], T[], Int32, Int32, Int32, Int32, ElementComparer, ref Int32)

Creates a new KdTree<T> from given and associated .
Declaration
protected static KdTreeNode<T> Create(double[][] points, T[] values, int depth, int k, int start, int length, ElementComparer comparer, ref int leaves)
Parameters
Type Name Description
System.Double[][] points
T[] values
System.Int32 depth
System.Int32 k
System.Int32 start
System.Int32 length
ElementComparer comparer
System.Int32 leaves
Returns
Type Description
KdTreeNode<T> Returns a new KdTree<T> filled by given and associated to respective .
Remarks

A k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

The k-d tree is a binary tree in which every node is a k-dimensional point. Every non- leaf node can be thought of as implicitly generating a splitting hyperplane that divides the space into two parts, known as half-spaces. Points to the left of this hyperplane represent the left subtree of that node and points right of the hyperplane are represented by the right subtree. The hyperplane direction is chosen in the following way: every node in the tree is associated with one of the k-dimensions, with the hyperplane perpendicular to that dimension's axis. So, for example, if for a particular split the "x" axis is chosen, all points in the subtree with a smaller "x" value than the node will appear in the left subtree and all points with larger "x" value will be in the right subtree. In such a case, the hyperplane would be set by the x-value of the point, and its normal would be the unit x-axis.

References:

  • ScienceDirect, Log-logarithmic worst-case range queries are possible in space Θ(N). Available on: https://www.sciencedirect.com/science/article/pii/0020019083900753?via%3Dihub

Implements

System.Collections.Generic.IEnumerable<T>
System.Collections.IEnumerable

Extension Methods

Serializer.Save<T>(T, out Byte[], SerializerCompression)
Serializer.Save<T>(T, Stream, SerializerCompression)
Serializer.Save<T>(T, BinaryFormatter, Stream, SerializerCompression)
Serializer.Save<T>(T, String, SerializerCompression)
Serializer.Save<T>(T, String)
Matrix.Concatenate<T>(T, T[])
Matrix.Replace<T>(T, Object, Object)
Combinatorics.Subsets<T>(IEnumerable<T>, Boolean)
Combinatorics.Subsets<T>(IEnumerable<T>, Int32, Boolean)
Matrix.SetEquals<T>(IEnumerable<T>, IEnumerable<T>)
DomainDataImporter.Import(IEnumerable<Object>, InputConfiguration)
DomainDataImporter.Import(Object, InputConfiguration)
ObjectSerialize.Serialize(Object)
Matrix.IsEqual(Object, Object, Decimal, Decimal)
  • Improve this Doc
  • View Source
In This Article
Back to top Copyright © MARS GROUP. HAW Hamburg