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Kurzzusammenfassung

Spezies, einschliefslich Vogel, konnen Verschiebungen in ihrer Verbreitung und Héaufigkeit
erfahren, was sich auf Okosysteme und die Biodiversitiit auswirken kann. Change-
Point-Detection (CPD)-Methoden sind wertvolle Werkzeuge zur Identifikation solcher
Verénderungen. Citizen Science bietet hierfiir grofsflichige Datensétze, bringt jedoch
auch beobachterbedingte Verzerrungen mit sich. Dies wirft Fragen zur Verlasslichkeit
etablierter CPD-Algorithmen bei der Anwendung auf solche Daten sowie zu ihrer Akzep-
tanz unter Fachexperten auf.

Diese Arbeit greift diese Problematik auf, indem sie einen CPD-Ansatz unter Verwen-
dung des "Bayesian Estimation of Abrupt Change, Seasonality, and Trend" (BEAST)-
Algorithmus auf einen Citizen-Science-Vogeldatensatz anwendet. Vor der BEAST-
Analyse wird eine Preprocessing-Pipeline entwickelt, um Beobachterverzerrungen zu re-
duzieren. Die Evaluation untersucht die Genauigkeit von BEAST sowie dessen 6kologis-
che Relevanz im Kontext von Citizen Science. Detektierte Verdnderungspunkte wurden
quantitativ mit dokumentierten 6kologischen Ereignissen validiert, wahrend Ornitholo-
gen die 6kologische Plausibilitdat und praktische Relevanz qualitativ bewerteten.

Die Ergebnisse zeigen, dass BEAST 6kologisch bedeutsame Verdnderungspunkte zuver-
lassig erkennt, wobei seine Sensitivitdt von der Datenaggregation und den gewéhlten
Preprocessing-Strategien abhéangt. Obwohl CPD manuelle Bewertungen nicht ersetzt,
wird es als wertvolle Ergénzung angesehen, um subtile oder unerwartete Veranderungen
aufzudecken, die Echtzeit-Uberwachung 6kologischer Prozesse zu unterstiitzen und das
Retraining von Machine-Learning-Modellen zu informieren.

Trotz des spezifischen Anwendungsfalls, unterstreicht diese Studie das breitere Potenzial
von CPD in der Citizen Science, indem sie zeigt, dass mit robustem Preprocessing und

Expertenvalidierung zeitnahe 6kologische Erkenntnisse gewonnen werden kénnen.
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Abstract

Species, including birds, can undergo sudden shifts in distribution and abundance due
to environmental changes, human activities, or natural variability, which can impact
ecosystems and biodiversity. Change Point Detection (CPD) methods are valuable for
identifying these shifts. For this, citizen science offers large-scale datasets, but also intro-
duces observer-related biases, raising questions about the reliability of established CPD
algorithms when applied to such data, and their trustworthiness among domain experts.
This thesis addresses this concern by implementing a CPD approach using the Bayesian
Estimation of Abrupt Change, Seasonality, and Trend (BEAST) algorithm on a citizen
science bird dataset. Prior to BEAST analysis, a tailored preprocessing pipeline is de-
veloped to mitigate user bias.

Evaluation examines BEAST’s accuracy and ecological relevance in citizen science con-
texts. Detected change points were quantitatively validated against documented ecologi-
cal events, while ornithologists qualitatively assessed ecological plausibility and practical
relevance.

Findings indicate that BEAST reliably detects ecologically meaningful change points,
though its sensitivity depends on data aggregation and preprocessing strategies. While
not replacing manual assessments, CPD is seen as a valuable complement to uncover
subtle or unexpected changes, supporting real-time ecological monitoring, and informing
machine learning model retraining.

Though case-specific, this study underscores CPD’s broader potential in citizen science,
enabling timely ecological insights when paired with robust preprocessing and expert

validation.
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1 Introduction

Ecological systems are inherently dynamic, shaped by intricate interactions among species,
environmental factors, and human activities. While gradual changes are common, ecosys-
tems can also experience abrupt shifts due to external pressures such as environmental
changes, human influence, and natural variability. These sudden transitions can fun-
damentally alter ecosystem structure, function, and biodiversity, often with long-term

consequences (Storch & Day 2020).

Accurately detecting these shifts is critical in ecology and conservation biology, as it
can inform effective environmental management, conservation strategies, and policy de-
cisions. A key methodological approach for this task is Change Point Detection (CPD),
a statistical technique used to identify moments when underlying processes experience

sudden or sustained changes.

However, the reliability of such analyses depends on comprehensive and geographically
dense data. In recent years, citizen science initiatives have become a valuable resource
for large-scale ecological monitoring. Through online platforms and mobile applications,
volunteers record their sightings, collectively producing datasets that can far exceed the

spatial and temporal coverage of conventional survey methods.

Despite their strengths in data volume and geographic reach, citizen science data also
pose unique challenges: sightings are typically “presence-only”, meaning absence data are
not systematically recorded, and volunteers vary widely in observation skill, reporting
frequency, and geographic preferences. Such biases can obscure true ecological signals,
making it difficult to differentiate between genuine ecological changes and artifacts of

reporting behavior.
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1.1 Research Gap

Regardless of these complexities, citizen science datasets continue to play a growing
role in ecology, raising two key gaps regarding the adoption of Change Point Detection

methods:

1. Algorithmic Transferability to Citizen Science Contexts: While Change
Point Detection algorithms have proven reliable in various time-series applications,
research is limited on how they perform with the distinct properties of citizen sci-
ence data in general, or bird sighting data in particular. The biases introduced
by volunteer-driven data may affect the detection of true shifts in species distribu-
tions and abundances, raising questions about an algorithm’s trustworthiness when

transferred to such data.

2. Lack of Systematic Expert Involvement: Currently, domain experts are sel-
dom involved in evaluating the practical relevance of CPD algorithms in ecology.
Yet, their systematic input is crucial for verifying whether detected change points
align with meaningful ecological events and for assessing the overall utility of the
method. Without expert involvement, any misalignment with established ecolog-
ical understanding or issues with interpretability can undermine trust and hinder

integration, regardless of the algorithm’s technical sophistication.

1.2 Objective and Research Questions

This thesis aims to address these gaps in applying Change Point Detection to citizen

science data by focusing on bird species distributions in Germany and Switzerland.

At the core of this investigation is the Bayesian Estimation of Abrupt Change, Sea-
sonality, and Trend (BEAST) algorithm, applied to volunteer-collected observations. A
structured framework is introduced to (1) mitigate biases through data preprocessing,
(2) detect potential shifts with BEAST, and (3) present the results through an accessible

user interface.

By centering on the transferability of CPD approaches to citizen science data and en-
suring ornithological expertise is incorporated, this thesis pursues both practical and

scientific outcomes. In particular, five key questions guide the research, aiming not only
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to provide use-case insights but also to extract broader lessons for applying CPD algo-

rithms in citizen science contexts:

e RQ1: Accuracy and Correspondence with Ecological Phenomena How ac-
curate is the BEAST algorithm in detecting significant change points in citizen sci-
ence time series data, and to what extent do these change points reflect actual eco-
logical shifts and align with known real-world events? Motivation: Assess whether
BEAST can robustly identify true changes and minimize false positives, while de-
termining the degree to which detected breakpoints match expert-confirmed bird

population phenomena.

¢ RQ2: Role of Data Preprocessing How does the applied data preprocessing
method affect BEAST’s ability to detect true ecological change points? Motiva-
tion: Understanding how data aggregation strategies can either highlight or obscure

certain types of change events, thus influencing both detection rates and precision.

e RQ3: Influence of Citizen Science Bias In what ways can observer bias
lead BEAST to detect false change points? Motivation: Exploring how volunteer-

collected data may introduce artifacts.

e RQ4: Expert Perception and Usability How do ornithological experts perceive
the usability and trustworthiness of BEAST for monitoring bird populations, and
what are their perspectives on integrating it into ongoing research and workflows?
Motivation: Examining the practical value of BEAST, including ease of interpre-
tation, confidence in its outputs, and potential roles in expert-driven ecological

monitoring.

e RQ5: Generalization and Best Practices What best practices and method-
ological insights emerge from this study for applying Change Point Detection meth-
ods to citizen science data in ecology? Motivation: Consolidating findings on into
actionable guidelines to inform future research and ecological applications utilizing

Change Point Detection on citizen science datasets.
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To answer these questions, a complementary evaluation strategy is employed:

e Quantitative Testing compares detected change points to documented ecological

events, testing BEAST’s accuracy in reflecting actual population shifts.

e Qualitative Interviews with ornithologists assess whether the algorithm’s out-
puts align with expert knowledge and whether the framework is trustworthy, inter-

pretable, and practically applicable.

Through this combined approach, the thesis offers two major contributions. First, it
delivers a case-specific assessment of how effectively BEAST—supported by bias-
mitigating preprocessing—deals with large-scale, volunteer-collected bird sightings. Sec-
ond, it produces broader guidelines for practitioners seeking to implement CPD on
presence-only data, informed by expert feedback and grounded in real-world ecological
contexts. These findings aim to help researchers and conservation professionals design,
validate, and deploy robust CPD strategies that meet technical standards while earning

the confidence of domain experts.

1.3 Outline

The work is organized as follows. First, the Background chapter is presented. This
chapter provides an introduction to citizen science and Change Point Detection (CPD).
Further, the BEAST algorithm is detailed.

The Related Work chapter examines existing strategies for mitigating user bias in cit-
izen science data, explores CPD algorithms and their applications in ecological research,

and reviews common evaluation methods for CPD algorithms.

In the following Implementation chapter, the framework developed for this thesis is
presented. It details the data preprocessing pipeline—spatial discretization, weekly ag-
gregation, and user bias mitigation—followed by the application of BEAST to each
species’ time series. Finally, a web-based user interface for visualizing detected shifts

is introduced.

The Evaluation chapter explains the overall design of the evaluation methods. It covers

two complementary strategies—semi-structured interviews with ornithologists to gather
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expert feedback and a quantitative comparison of BEAST outputs with archival records

of documented bird population changes.

The Results chapter compiles the outcomes of both the qualitative and quantitative eval-
uations. It presents ornithologists’ perspectives on the accuracy and utility of BEAST,

along with detection rates measured against the archival data.

Building on the evaluation results, the Discussion chapter systematically discusses each
Research Question in light of the findings. It addresses the strengths and limitations of
BEAST under the chosen preprocessing strategy, highlights the algorithm’s real-world
applicability, and presents broader implications for applying CPD methods to citizen

science datasets.

The final Outlook chapter presents future directions for research and practical inte-
gration. It offers recommendations for improving the adopted methodology, addresses
remaining challenges, and outlines potential avenues for future research, thereby offering

a roadmap toward more agile, data-driven ecological monitoring.

1.4 Context of this work

This thesis was developed within the Ornitho project, supported by the Federation of
German Avifaunists (DDA) and the Swiss Ornithological Institute. Their platforms
collect millions of bird observations across multiple European countries, providing a major
resource for biodiversity research but also posing challenges related to data reliability and

volunteer biases.

To improve data quality, Ornitho is exploring Al-driven methods to flag implausible
sightings. Motivated by this need for adaptive models, the concept of building a Change
Point Detection system for each bird species was proposed. This thesis serves as a first
step in this direction by assessing whether Change Point Detection is applicable to citizen

science data in general and the Ornitho use case in particular.

This thesis represents a collaborative effort between the University of Applied Sciences
Hamburg (HAW), the DDA, the Swiss Ornithological Institute, and inovex GmbH, bring-
ing together academic, domain, and technical expertise to explore CPD’s potential in

large-scale citizen science contexts.
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2.1 Citizen Science

Citizen science refers to the involvement of non-professional scientists in the research
process, encompassing activities such as data collection, analysis, and dissemination of
scientific knowledge (Vohland et al. 2021). It represents a collaborative approach where
members of the public contribute to scientific projects, often in partnership with profes-
sional scientists and institutions; this participation can take various forms, ranging from
recording observations of natural phenomena to analyzing astronomical or medical data
(Davis et al. 2023).

Advancements in technology and the proliferation of internet connectivity have signifi-
cantly expanded the scope and scale of citizen science (Bonney 2021). Online platforms,
mobile applications, and GPS-enabled devices have made it easier for volunteers to par-
ticipate in projects worldwide, enabling real-time data collection and analysis (Johnston
et al. 2023). This technological evolution has transformed citizen science into a global

phenomenon, engaging participants in diverse research initiatives.

2.1.1 Relevance

Citizen science contributes substantially to the advancement of scientific knowledge by
facilitating large-scale data collection that would be otherwise impractical for individual
researchers or small teams (Berghen et al. 2025). Projects like eBird leverage the con-
tributions of birdwatchers globally to monitor bird distributions and migration patterns,
generating large datasets that inform conservation efforts and ecological studies (Zhu &
Newman 2024).

Engaging the public in scientific research fosters a greater appreciation and understanding

of science. According to Smith et al. (2024), citizen science projects not only advance
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scientific research but can also foster a more scientifically literate society and increase

civic action.

Additionally, citizen science enhances the democratization of science by making it more
accessible and participatory. It breaks down barriers between professional scientists and
the public, encouraging collaboration and dialogue. This inclusive approach can lead to

increased trust in scientific institutions (Hall et al. 2024).

2.1.2 Fields of Application

Citizen Science is applied to a vast amount of research fields, including Food Science
(e.g. PataFEST), Astronomy (e.g. Galaxy Zoo), and Epidemiology (e.g. Flu Near You).
However, one of the most prominent applications of citizen science is in environmental

monitoring.

Figure 2.1 shows the proportion of ecological citizen science projects per taxonomic group,
compared to their abundance on Earth and the number of professional scientists in that
field. It highlights that birds, amphibians, reptiles, and mammals are significantly over-
represented in citizen science projects compared to their relative abundance on Earth.
This bias is likely due to the ease of observing and identifying these species, as well as the
public’s general interest in them; meanwhile, less charismatic species or taxonomic groups
that are harder to access are underrepresented, leading to potential gaps in biodiversity
monitoring (Theobald et al. 2015).
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Described Species Citizen Science Scientists
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Figure 2.1: Proportion of sampled citizen science projects covering one or more taxonomic
categories (middle stacked bar) compared to each group’s relative abundance
on Earth (left bar) and representation among professional scientists (right
bar). Adopted from Theobald et al. (2015).

Further, Figure 2.2 shows that citizen science projects are predominantly focused on
terrestrial and freshwater environments, while marine ecosystems are significantly un-
derrepresented. This disparity presumably arises because marine environments, despite

covering a vast portion of the Earth’s surface, are less accessible to the public.

Areaon Earth Citizen Science

Terrestrial

Freshwater

Marine

Total Area = 510,073,024 sgkm n=388

Figure 2.2: Proportion of sampled citizen science projects collecting data in terrestrial,
freshwater, or marine environments relative to their global area coverage.

Adopted from Theobald et al. (2015).
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Figure 2.3: Input interface for a new observation in the two most commonly used bird
citizen science project apps in Europe.

For bird species in particular, the most widespread citizen science projects include pro-
grams such as eBird, operated by the Cornell Lab of Ornithology, which allows bird-
watchers worldwide to record and share their observations. In Europe, the most prevalent
citizen science effort is the Ornitho project, used in multiple countries. The mobile app
for this project is iNaturalist. These projects engage volunteers in large-scale data col-
lection, helping researchers monitor bird populations, migration patterns, and long-term
ecological changes. Figure 2.3 displays the two similar input interfaces used for logging

new observations of both mobile apps.



2 Background

2.1.3 Presence-Only and Presence-Absence Data Collection

Citizen science projects employ various data collection methods tailored to the project’s
objectives and the participants’ capabilities. For citizen science projects in ecology, specif-
ically, data can be collected in different ways. The most prevalent types are presence-only

and presence-absence data.

For presence-only data, volunteers report sightings of species without noting their ab-
sences. This type of data collection is straightforward as it only involves recording obser-
vations when they occur, without the need for systematic surveys or additional tracking
efforts. However, it requires careful analysis to address sampling bias and spatially un-
even observation efforts (Di Febbraro et al. 2023), which can result in under-sampled
regions. These gaps in data coverage may lead to inaccurate assumptions, such as falsely
concluding the absence of species in poorly surveyed areas. Platforms like eBird and

Ornitho collect presence-only data.

Another important type is presence-absence data, in which participants record both
the presence and confirmed absence of species in surveyed areas. This comprehensive
data provides deeper insights into species distributions and is crucial for monitoring
changes over time. However, collecting reliable absence data necessitates rigorous proto-
cols to ensure that non-detections represent true absences rather than overlooked pres-
ences (Cruickshank et al. 2019).

2.1.4 User Bias

A key challenge in analyzing ecological citizen science data lies in understanding that this
data source does not provide direct estimates of abundance. In contrast to structured
surveys, where individuals are systematically counted, citizen science data represent a
continuous accumulation of sighting reports. This introduces several factors that distort

the true number of individuals present in a given area.

First, spatial biases can arise when observations are concentrated in easily accessible
or popular locations, leading to uneven data coverage (Backstrom et al. 2025). Conse-
quently, remote or less accessible regions tend to be undersampled. Furthermore, users
may select sites based on ecological factors, favoring biodiversity hotspots or areas where

they anticipate finding a particular species of interest (Johnston et al. 2020).

10
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Temporal biases can also be present in the data. Volunteers tend to be more active on
weekends and during specific times of the year. In bird monitoring, for example, user
activity peaks during spring and autumn due to bird migration, when birds are more
visible and active (La Sorte & Somveille 2020).

Further, a bias exists due to user errors, which stem from inaccurate or incomplete sub-
missions. These errors can take the form of False Positives, where an observer mistakenly
records a species that was not present (Johnston et al. 2023). Likewise, False Negatives
occur when a species is present but goes unreported due to lack of detection (Rempel
et al. 2019).

Another critical source of bias arises from taxonomic preferences. Volunteers are often
motivated by encounters with interesting wildlife. Observers are more likely to travel
further to record rare or more charismatic species like the White-tailed Fagle while ne-
glecting more common taxa, such as the Wood Pigeon. This introduces an additional layer

of bias toward species that are considered more noteworthy (Johnston et al. 2023).

These factors, collectively, contribute to significant user bias in the data, making it
difficult to directly link sighting records to the actual number of individuals present. If
not addressed, this can significantly affect the outcomes of ecological studies (Backstrom
et al. 2025). For Change Point Detection, this is particularly relevant as it aims to identify
disruptions that reflect real changes in bird populations, rather than patterns influenced
by user behavior. Therefore, it is critical to develop methodologies that account for these

biases and ensure that the detected change points correspond to actual shifts.

2.2 Change Point Detection

Change Point Detection (CPD) is a fundamental statistical task used to detect shifts
in a dataset over time. A change point marks an instance in time where the statistical
properties of a time series experience a significant alteration. Detecting these points is

essential for understanding underlying dynamics in data.

11
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2.2.1 Definition

Formally, given a sequence of observations {Xt}i\il, a change point exists if the statistical
properties of the sequence before and after a certain time 7 differ. That is, 7 partitions
the time series into segments with different probability distributions. Change Point

Detection involves identifying the number and positions of these change points.

Considering a sequence of time series variables {zy,, Ty t1,...,2,}, Change Point De-
tection can be formulated as a hypothesis testing problem between two alternatives.
According to Aminikhanghahi & Cook (2017), this can be expressed as:

e Null hypothesis Hy (no change occurs):

Hp:Px, =Px, = =Py, (2.1)

e Alternative hypothesis H4 (a change occurs at some point 7):

Hy:3m <7 <nsuchthat Py, =---=Px_#Px ,, = =Px, (2.2)

where Px, denotes the probability distribution of X;, and 7 is the change point. The
goal of CPD is to determine whether and where such a point 7 exists within the interval

(m,n) at which the distribution of the observations changes.

The types of changes that may constitute a change point include, but are not limited
to, alterations in the mean, dispersion, count, or slope of the data (see Figure 2.4). A
common type of change point is a sudden shift in the mean of the data, where the average
value of observations changes abruptly at point 7. Similarly, a change in the variance
or standard deviation refers to alterations in the data’s dispersion, indicating that ob-
servations become more or less spread out after the change point. Further, a change in
the slope denotes a shift in the trend component of the time series, where the rate of
increase or decrease changes at 7. Lastly, changes in periodicity involve modifications in
the cyclical patterns within the data, such as the emergence or disappearance of seasonal

effects.
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Figure 2.4: Types of change points in time series data, differentiated by statistical prop-
erties. Adopted from Arcgis (2024).

The exact nature of what constitutes a change point is not strictly defined regarding the
suddenness or gradualness of the transition. Some researchers consider only abrupt shifts
as change points, while others also include gradual transitions (Zhao et al. 2019). The
ambiguity arises because real-world data often exhibit changes that are neither instan-
taneous nor entirely smooth. As such, the definition of a change point can be context-
dependent, and detecting gradual changes may require different analytical approaches

than detecting abrupt ones.

2.2.2 Relevance

Detecting change points in time series data is crucial across various scientific fields,
including ecology, finance, and engineering (Aminikhanghahi & Cook 2017). It is vital
for identifying events, which may be subtle yet significant. In ecological studies, for
example, change point analysis can reveal shifts in species population, water quality, or
vegetation development, indicating environmental changes, habitat loss, climate change
effects, or anthropogenic impacts (Fan et al. 2024). Understanding these changes is
essential for timely conservation efforts to mitigate adverse effects. Moreover, identifying
periods of significant change can help scientists focus on investigating potential causes,

leading to better-informed policy decisions.
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Another relevant contribution of automatic Change Point Detection is the significant
reduction in time required to identify predefined events within large-scale time series
datasets. This automation minimizes the need for repetitive manual processing. For
example, change point analysis can mark an organism’s time of death based on a sudden
decline in brain activity (Aqel et al. 2024).

2.2.3 Change Point Detection Methods

Methods for detecting change points changes can be broadly categorized into model-
based and non-parametric approaches, as well as supervised and unsupervised techniques
(Aminikhanghahi & Cook 2017). Additionally, they can be distinguished as offline meth-
ods, which analyze the entire time series retrospectively, and online methods, which

detect changes as new data arrives (Van den Burg & Williams 2020).

Statistical methods form the foundation of Change Point Detection. Basic approaches,
such as Cumulative Sum (CUSUM) and Likelihood Ratio Tests, identify structural breaks
by measuring deviations from an expected pattern. CUSUM accumulates small devia-
tions over time and signals a change when the cumulative sum exceeds a predefined
threshold (Horvath et al. 2022). Likelihood Ratio Tests compare the probability of the
data fitting two different models, one assuming no change and the other incorporating a
possible break (Skrobotov 2023).

Segmentation-based methods take a different approach by dividing the time series into
distinct segments, optimizing a predefined cost function. Binary Segmentation is a recur-
sive technique that detects the most significant change point and then applies the same
process to the resulting segments until no further substantial changes are found (Kovécs
et al. 2023). The Pruned Exact Linear Time (PELT) method improves upon this by
applying a pruning strategy, which reduces computational complexity to O(n) (Truong
et al. 2020).

More advanced techniques include Bayesian approaches, which treat change points as
random variables and use Bayesian inference to compute their distributions. This prob-
abilistic framework allows the incorporation of prior knowledge and the quantification
of uncertainty regarding the location and number of change points (Zhao et al. 2019).
Bayesian methods can be particularly powerful in applications where prior information

is available or where uncertainty quantification is crucial.
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Machine learning methods, including Kernel-Based methods and Clustering algorithms,
can capture complex, non-linear relationships in the data, detecting structural changes
that traditional methods might miss (Aminikhanghahi & Cook 2017). While unsuper-
vised clustering algorithms such as K-means can identify change points as transitions
between clusters, supervised learning approaches such as Decision Trees can be trained

to recognize patterns associated with change points (Aminikhanghahi & Cook 2017).

Online detection methods are essential in scenarios where immediate response to changes
is required. Online CUSUM is an extension of the standard CUSUM approach that con-
tinuously updates its calculations as new data arrives, triggering an alert when deviations
exceed a defined threshold (Wei & Xie 2022). Bayesian online Change Point Detection
models estimate a probability distribution for the time that has passed since the most
recent change point (Van den Burg & Williams 2020). Both supervised and unsupervised
machine learning models can process streaming data within a sliding window with size n,

allowing for near-real-time Change Point Detection (Aminikhanghahi & Cook 2017).

Ultimately, selecting the appropriate Change Point Detection method depends on multi-
ple factors, including data complexity, computational efficiency, and the need for real-time

analysis.

BEAST Algorithm

The Bayesian Estimator of Abrupt Change, Seasonal Change, and Trend (BEAST) by
Zhao et al. (2019) is an advanced time series decomposition algorithm developed to ad-
dress the challenges of analyzing complex, nonlinear dynamics in ecosystems. BEAST
was initially developed using satellite time series data to track land-use changes, vege-
tation dynamics, and ecosystem disturbances. However, the authors emphasize that its
ability to capture both subtle and prominent changes makes it applicable in fields such
as disturbance ecology, climate science, and land resource management. The algorithm
is suitable for a broad range of time series data types, including Normalized Difference
Vegetation Index (NDVI), climate variables, and various ecological indicators. It has
been successfully applied in various other research fields for Change Point Detection,
including wildlife research, forestry, oceanography, geophysics, euthanasia, and food sci-
ence (Smith & Pauli n.d., Mulverhill et al. 2024, Oehlert et al. 2023, Mu et al. 2023, Aqgel
et al. 2024, Zaytsev et al. 2024). Thise wide applicability and strong acceptance within

the ecology research community were key factors in selecting BEAST for this thesis.
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Unlike conventional single-model approaches, BEAST employs a Bayesian ensemble method,
which integrates multiple model outcomes to produce a comprehensive and probabilis-
tically reliable estimate of temporal patterns. The authors suggest that, rather than
aiming to identify a single best-fit model, each model should be viewed as valuable in
its own way, contributing unique insights that collectively enhance overall understanding
(Zhao et al. 2019). This Ensemble approach helps mitigate issues stemming from trying
to select one single model based on an arbitrary criterion, such as the Akaike’s Informa-
tion criterion (AIC) or the Bayesian information criterion (BIC), which might lead to
misinterpretations and fortuitous conclusions of the data (Zhao et al. 2019). Such mis-
conceptions may significantly influence our understanding of ecosystems and the policy

decisions we implement.

Using BEAST, the input data can have multiple, overlapping sources of variation, in-
cluding seasonality and trend. It is suited for cases where there is a need to detect
both abrupt (high-magnitude) and subtle (low-magnitude) changes (Zhao et al. 2019).
Further, in its latest version, BEAST accounts for outliers in the data, preventing these
atypical data points from skewing the model’s understanding of the underlying seasonal
and trend patterns. The output of the BEAST analysis also includes additional valuable

statistical diagnostics, such as change point probabilities and confidence intervals.

The BEAST algorithm decomposes a time series into four primary components: trend,
seasonality, noise, and abrupt change (i.e., change points). Its goal is to accurately repli-
cate the given, complex original signal by estimating these components. To achieve this,
BEAST views a time series y(t) as the sum of its trend, seasonal, and noise components.

Mathematically, this can be expressed as:

y(t) = S(t;05) + T(t;07) + € (2.3)

where S(t; Og) represents the seasonal component parameterized by ©, T'(¢; Or) is the
trend component parameterized by T(0Or), and € is the noise component, accounting
for the portion of the data not explained by the seasonal and trend components. The
seasonality component S(¢; ©;) is modeled as a piecewise harmonic function with specified
frequencies, while the trend component T'(t; ©7) is modeled as a piecewise linear function.
Change points for seasonality and trend are introduced as breaks in the time series where

either the seasonal frequency or the trend slope changes. Each change point in the

16



2 Background

trend or seasonal component allows the algorithm to capture abrupt shifts in the data’s

behavior.

The seasonal component of the time series is mathematically represented as a piecewise
harmonic model, divided by p seasonal change points. These change points split the
signal into p + 1 segments, each with its own phase and amplitude. Thus, the seasonal

signal is given by:

2rlt 2mlt
S(t) = Z <ak7l sin % + by, cos 7}2) (2.4)

where Ly is the harmonic order of the k-th segment, P is the seasonal period (funda-
mental frequency), and aj; and by, are the amplitudes for the sins and cosines term
in the segment. Partitioning the harmonic component of the time series results in a
non-continuous signal with unknown parameters, specifically the number and timing of

change points, as well as the phase and amplitude of each harmonic oscillation.

The trend component of the time series is modeled as a piecewise linear function, where

each segment is represented as

T(t) = aj + bjt (2.5)

where a; and b; are the intercept and slope of the j-th segment, respectively. The points
in time where segments transition are the change points of the trend component. In
addition to the parameters of the linear segments, the trend component also has unknown
parameters, similar to the seasonal component, namely the number and timing of change

points, which need to be estimated.

Thus, in order to estimate the time series, the algorithm must estimate the following

parameters, which collectively define the structure of the time series:

e Model Structure M
— Number and timing of change points for trend and seasonality

— Harmonic orders of the seasonal elements

e Segment-Specific Coefficients [
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— Trend: Slopes and intercepts of the linear trend segments

— Seasonality: Sine and cosine coefficients of the harmonic functions

e Noise Parameter o2

— Describes the noise component

The estimation process begins with an initial guess, after which the quality of this model
is evaluated using the posterior probability. As formulated by Zhao et al. (2019), the
posterior probability p(Bar, 0%, M|D) is calculated based on Bayes’ Theorem:

D|B, 02, M) - p(Bar, 02, M)

(D) (2.6)

p(Bar. 0 M|D) = 24

where p(Bar, 02, M|D) is the posterior probability, p(D|Bar, 02, M) is the likelihood,
p(Bar, 02, M) is the prior probability, and p(D) is the marginal likelihood, which nor-
malizes the posterior distribution across all possible models, ensuring that the posterior

probabilities sum to 1.

The prior p(Bar, 0%, M|D) reflects general assumptions set by the authors, including
constraints on the change points’ minimum and maximum numbers and their minimum
separation distance. These settings are customizable, allowing for flexibility across differ-
ent application contexts. The authors intentionally designed the prior to be generic and
non-informative, ensuring the algorithm’s applicability to a broad range of time series
(Zhao et al. 2019).

The likelihood p(D|Bar, 0%, M) is distinct from the prior as it is purely data-driven,
depending on the input time series. In BEAST, the likelihood quantifies how well the
model M explains the observed data D. Given the model structure M, the coefficients Sy
, and the noise parameters o2, the time series data is decomposed into trend and seasonal
components, with the likelihood p(D|Bar, 02, M) reflecting the fit of these components
to the actual data points. The likelihood calculation involves estimating how closely the
observed data y; matches the predicted values based on the current model configuration,

accounting for both the seasonal and trend components.

BEAST employs a Monte Carlo-based inference approach for exploring the vast model

space of BEAST), as it allows efficient sampling of possible model configurations without
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requiring an exhaustive search. The MCMC sampling process iteratively generates sam-
ples of model parameters by alternately sampling the model structure M, the parameters
B of the seasonal and trend components for the chosen model, and the noise variance
o2. Each iteration updates the model parameters based on the current data and model,
refining the posterior distribution with each step. This iterative process eventually con-
verges, yielding a set of models and associated parameter estimates that reflect the data’s

underlying patterns.

After the MCMC sampling process, BEAST combines the results from all sampled mod-
els using Bayesian Model Averaging (BMA). This allows the algorithm to handle model
uncertainty by combining multiple candidate models rather than selecting a single best-
fit model. The posterior inference is performed on the aggregated set of sampled models,
where each model M is weighted by its calculated posterior probability. This approach
yields an overall estimate for the time series decomposition, combining the trend, sea-
sonality, and change point estimates across models. The posterior distribution for each
parameter is used to calculate uncertainty intervals, providing a measure of confidence

in the results.

The final estimate g(t) of the time series is derived as follows:

90 = S w0 (2.7)

where N is the total number of sampled models, and y](\i[) (t) represents the time series

decomposition from the i-th sampled model.

Through posterior inference, BEAST produces a robust time series decomposition with
confidence intervals around trend and seasonal estimates, capturing the variability and
uncertainties in the model space. This approach allows for the reliable detection of
change points and seasonal patterns, which are essential for interpreting ecological and

environmental dynamics accurately.

After performing the change point analysis, the BEAST package provides a comprehen-
sive array of output plots, compiled in Figure 2.5. In Figure 2.5a, an exemplary input
time series y(t) is shown in red, illustrating the observed data that is analyzed. Its true
underlying dynamics are decomposed in Figure 2.5b, with distinct seasonal and trend

components shown as separate curves.
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(b) True dynamics of the time series in (a). (¢) Dynamics extracted by BEAST.

Figure 2.5: Illustration of BEAST analysis on a simulated time series. The figure shows
the input time series (a), the true dynamics (b), and the outputs of BEAST
(c), including detected seasonal and trend signals, change points (scp/tep),
uncertainty envelopes, and the probability of observing a scp or tcp at any
given time. Adopted from Zhao et al. (2019).
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Figure 2.5¢ depicts the dynamics extracted by BEAST. Highlighted in green, the sea-
sonal component detected by BEAST is shown, along with the identified seasonal change
points, labeled as scpl and scp2, and marked with blue vertical bars. Bayesian Model
Averaging enables the a confidence estimation at each time step, providing probabilities

for the presence of a change point, which are shown below the extracted seasonal signal.

The subsequent plot, highlighted in yellow, illustrates the trend component, which is
modeled as piecewise linear segments. This plot also includes the probabilities for a
trend change point, shown as probability curves below the trend. Credible intervals of
the estimated trend signal are displayed as gray envelopes, offering a more comprehensive
uncertainty range compared to single-best-model approaches. The final plot shows the
residuals in blue, which represent the portions of the signal not classified as either seasonal

or trend components by BEAST.

Additionally, BEAST provides further insights (see Figure 2.6), such as the probability
distribution of the estimated total number of change points for both seasonal and trend
components, the order of seasonal harmonics per seasonal segment, and the probability

of a positive trend change at any given time.

Estimated probability of having positive rate-of-change
Prob distributon of total ch int number Estimated order of the seasonal harmonic over time in trend (i.e., a greening)
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Figure 2.6: Additional output of BEAST, showing further estimation analytics. Adopted
from Zhao et al. (2019).

21



3 Related Work

In the development and evaluation of the proposed framework, three main components
are considered: a preprocessing scheme to reduce user bias in the applied citizen science
data, the application of a Change Point Detection algorithm, and the evaluation of its
performance. To provide context for these components, this chapter presents an overview
of Related Work in these areas.

3.1 User Bias Reduction of Citizen Science Data

While citizen science has democratized data collection and greatly expanded geographical
coverage, it also introduces challenges pertaining to data quality and reliability. As
discussed in Chapter 2.1.4, a major concern is user bias, which arises from variations in

observer effort, expertise, and reporting practices.

To mitigate the spatial unevenness of sampling effort, Matutini et al. (2021) and Steen
et al. (2021) propose subsampling procedures. Such approaches have, among others,
been tested on eBird data (Johnston et al. 2021). Typically, density-based sampling is
employed, whereby a lower proportion of records is retained from densely sampled areas,

thus achieving more balanced dataset coverage.

However, subsampling leads to a loss of valuable data. As an alternative, artificial im-
putation can replace missing values with plausible estimates (Bowler et al. 2025). For
instance, Grattarola et al. (2023) employ species distribution models (SDMs) to estimate
species presences, thereby reducing spatial imbalances. Similarly, Dakki et al. (2021)
developed an imputation method to address spatial and temporal data gaps simultane-

ously.

Zbinden et al. (2014) applied the SOPM abundance index to address the issue of un-

even sampling efforts in opportunistic biological records. Although published some time
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ago, this method remains relevant (Bowler et al. 2025). SOPM (Summe der Ortspen-
tadenmazima) is a German acronym describing its computation: for a target species, it
represents the sum of the maximum number of records within a selected area and over
a five-day period. This index has already been successfully applied to the same dataset
used in this thesis by ornithologists from the Swiss Ornithological Institute, and was

therefore chosen to be applied in this thesis.

In contrast to post-processing solutions, Callaghan et al. (2023) suggest reducing bi-
ases at the data collection stage. They recommend motivating participants to record

observations during underrepresented periods and in underrepresented locations.

3.2 Change Point Detection for Ecological Studies

3.2.1 Algorithms

Performing Change Point Detection in ecology is inherently complex due to the intricate
and dynamic nature of ecological systems. These complexities necessitate sophisticated
CPD methods that can accurately discern genuine shifts from natural fluctuations. This
section reviews prominent Change Point Detection algorithms applied for ecological stud-
ies, emphasizing traditional methods, their limitations, and recent advancements that

have enhanced robustness and flexibility.

Traditional methods, such as global linear models applied by Myneni et al. (1997), pro-
vided foundational insights but often oversimplified nonlinear ecological processes (Zhao
et al. 2019). Piecewise linear models improved flexibility by segmenting time series,
enabling the detection of abrupt shifts, but remained sensitive to noise and required

user-defined parameters (Banesh et al. 2019).

To better capture ecological dynamics, additive models like DBEST and bfast were intro-
duced. DBEST integrates a level-shift detection mechanism with thresholds to identify
discontinuities in trends, followed by decomposition into trend and seasonal components
using STL (Seasonal and Trend decomposition using Loess) (Li et al. 2022). The Breaks
For Additive Seasonal and Trend (bfast) algorithm developed by Verbesselt et al. (2010)
decomposes time series data into trend, seasonal, and remainder components, allowing for

the detection of structural changes in both trend and seasonality. However, both models
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rely on fixed parameter choices, which can lead to inconsistencies. For example, conflict-
ing interpretations of Amazon forest responses to droughts highlight the limitations of

single-model approaches (Zhao et al. 2019).

Probabilistic methods, such as BEAST, address these challenges by estimating change
point probabilities rather than making binary decisions. Unlike bfast, BEAST does not
require pre-specified change point numbers and can model complex trends and seasonal
variations more flexibly. By averaging multiple models, it provides a nuanced perspective
on ecosystem shifts, improving reliability in ecological decision-making (Zhao et al. 2019).
BEAST is further detailed in Chapter 2.2.3.

Li et al. (2022) conducted a comparative evaluation of BEAST, DBEST, and bfast for
land surface temperature time series analysis, specifically. Their study demonstrated
that BEAST outperformed the other methods in terms of accuracy and robustness to
noise, particularly in capturing abrupt changes and non-linear dynamics. Further, they
proposed an improved version of BEAST, which addressed its susceptibility to false
breakpoints by introducing thresholds based on trend magnitude, slope changes, and

breakpoint probabilities.

Beyond its measured superiority, BEAST is also widely applied in recent research to
detect regime shifts, disturbances, and ecological changes. It has been used across various
domains, including wildlife research, forestry, oceanography, and geophysics (Smith &
Pauli n.d., Mulverhill et al. 2024, Ochlert et al. 2023, Mu et al. 2023), making it a valid

choice for the analyses conducted in this thesis.

3.2.2 Applications using Citizen Science Data

While citizen science data is increasingly recognized as a valuable resource for large-
scale ecological monitoring, the application of CPD algorithms to such datasets remains
limited. Several studies have explored methods for detecting ecological changes using
citizen science data, demonstrating both the potential and the challenges associated
with these approaches. In this section, some influential papers will be reviewed, with no

claim to completeness.

Gouraguine et al. (2019) investigated the effectiveness of marine citizen science programs
in detecting long-term ecosystem changes, particularly in resource-limited areas where

no alternative data sources exist. Using an 11-year dataset collected by volunteers in
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Southeast Sulawesi, Indonesia, the study analyzed changes in coral reef ecosystems by
examining benthic cover and fish communities. The authors employed generalized linear
models (GLMs) to identify trends and assess whether changes over time were statistically
significant. Their findings demonstrate that citizen science data can effectively track long-

term ecosystem changes, though data quality control remains a significant challenge.

Although relatively dated, the work of Walker & Taylor (2017) remains highly relevant,
as it closely aligns with the use case examined in this thesis. The study evaluates the
reliability of citizen science data from the eBird platform in modeling long-term popula-
tion trends of migratory bird species. By comparing eBird data with the North American
Breeding Bird Survey (BBS), the study assessed whether volunteer-collected data could
provide accurate estimates of population changes. The results showed that eBird data
successfully detected similar population trends as the BBS for many bird species. How-

ever, for species with low detection rates in eBird, trend estimates were more uncertain.

Habel et al. (2022) integrated presence-only data from multiple sources, including volunteer-
collected contributions, and employed Linear and segmented regression to identify change
points in species traits and habitat associations over time. These techniques enabled re-

searchers to pinpoint critical changes in butterfly populations.

3.2.3 Methods for CPD algorithm evaluation

Due to the wide use of CPD, extensive effort has gone into evaluating algorithm perfor-
mance, often by assessing accuracy in retrieving known change points. While straight-
forward with ground-truth labels, this becomes challenging in fields like ecology, where
true changes are often uncertain (Zhao et al. 2019). Researchers address this with diverse

validation approaches, offering a broader view of algorithm reliability.

A common approach is using synthetic data with known parameters, providing a baseline
for algorithm performance. If an algorithm fails to detect embedded change points in
such data, it is unlikely to succeed in real-world scenarios. Li et al. (2022) compared
BEAST and bfast using this method.

Beyond controlled settings, Zhao et al. (2019) recommend qualitative and quantitative
validation against general or expected patterns to assess whether detected changes align
with expected patterns. For instance, a failure to identify deforestation in a documented

region may indicate algorithmic shortcomings.
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Van den Burg & Williams (2020) demonstrated that expert annotations offer a validation
method by comparing algorithm-detected changes to human-labeled events using met-
rics such as accuracy and Fl-score. This be particularly useful for evaluating whether

algorithms capture the transitions that humans interpret as significant.

In addition, Browning et al. (2017) applied proxy data to provide indirect confirmation
of change. They demonstrated how a detected major shift in vegetation greenness can
be cross-referenced with climate variables, fire severity indices, and changes in moisture

levels.

Each validation method has limitations: synthetic data oversimplifies real-world com-
plexities, qualitative assessments and expert annotations can be subjective, and proxy
data may not establish causality. Consequently, Zhao et al. (2019) recommend combining

multiple strategies to build a more holistic view of performance.
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To answer the research questions posed in this thesis, a framework capable of identifying
significant shifts within bird sighting data is developed. This framework is designed
to analyze spatio-temporal changes in bird populations, specifically targeting abrupt
alterations in the trend trajectories of various bird species over the defined observation
period and within specified spatial grids. This approach includes a preprocessing scheme
to mitigate biases, Change Point Detection with BEAST, and result presentation via a

user interface.

The chapter starts with a requirement analysis, outlining the functional and non-functional
requirements. It then introduces the modular software design and details key modules:
data acquisition, preprocessing, time series construction, Change Point Detection, post-

processing, and result presentation.

4.1 Requirement Analysis

The following requirement analysis outlines the core objectives and constraints that the
solution must satisfy to effectively detect spatio-temporal shifts in bird sighting data.
These requirements ensure that the system is not only functionally robust—capable of
accurate data preprocessing, Change Point Detection, and result presentation—but also

adheres to stringent performance, reproducibility, and maintainability standards.
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4.1.1 Functional Requirements

1. Data Preprocessing;:

e The system shall aggregate individual sighting records into defined spatial

units and organize them into time series.
e The system shall implement mechanisms to reduce known user-induced biases.
2. Change Point Detection:

e The system shall perform statistical Change Point Detection on the aggregated
time series to identify significant shifts in the temporal patterns of species

observations.

e The system shall provide interpretable outputs, including the identification of
abrupt trend changes and corresponding confidence measures for each detected

change.
3. Result Presentation:

e The system shall offer a clear, interpretable User Interface for evaluation pur-

poses.

4.1.2 Non-Functional Requirements

1. Performance:
e The system shall handle millions of sighting records efficiently.

e The system shall perform Change Point Detection on numerous species with-

out prohibitive runtimes.
2. Reproducability & Maintainability:

e The system shall ensure that data preprocessing, merging, and Change Point
Detection are reproducible, documented, and transparent for future validation

and extension.
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4.2 Software Design

To address the above requirements effectively, a modular software architecture was cho-
sen. This design facilitates a clear separation of the functional responsibilities into dis-
crete modules. Each module can then be implemented, tested, and extended indepen-
dently, which is particularly advantageous in notebook-based development environments.

The system is structured into the following components:

1. Data Acquisition

2. Data Preprocessing

3. Time Series Construction

4. User Bias Correction

5. Change Point Detection (BEAST Analysis)
6. Postprocessing & Result Consolidation

7. User Interface

Figure 4.1 conceptually illustrates how these components interact, starting with raw data

ingestion through to final result presentation.
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Figure 4.1: Component Diagram of the Implemented Architecture.
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4.3 Component Descriptions

4.3.1 Data Acquisition

The core input data consist of bird sighting records collected via two national citizen-
science platforms where users can log observations of various taxa, including birds, via
websites or the mobile application ¢Naturalist. The Ornitho network operates across
multiple countries; however, this study exclusively employs data from the platforms of
Germany (ornitho.de) and Switzerland (ornitho.ch), available as dataframes. The
time period is limited to 2018-2022.

Each record contains the following essential fields:
(species name and ID, date, latitude, longitude, observer ID, optional metadata)

For the purposes of this study, only the date, location, and species are relevant for Change

Point Detection; therefore, observer ID and optional features are not considered.

4.3.2 Data Preprocessing
Dataset Merging

While both datasets fundamentally have the same information and structure, they differ
in some aspects. To address this, each dataset was preprocessed to standardize data
structure, format, and terminology. The difference and resulting standardized format
are detailed in the Table 4.1 below.

Feature German Data Swiss Data Merged Data
Date Format dd.mm.yyyy yyyy-mm—-dd yyyy-—nmm-dd
Feature Names lowercase UPPERCASE lowercase
Species IDs German-specific IDs International IDs International IDs
Species Names German Swiss German German

Table 4.1: Comparison of key feature differences between the German and Swiss bird
sighting datasets and the resulting standardized format in the merged dataset.
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Since the two datasets are gathered independently and cover disjoint geographical areas

(i.e., no overlap in exact coordinates), the merged dataset D is their set union:
D = Dge U Dy

where Dg. and D, are the german and swiss sightings, respectively. As each record
is uniquely identified, there is no intersection. Hence, the datasets can be merged by
simply concatenating their records without requiring deduplication or conflict resolution.
Therefore, the total number of records in the merged dataset D is simply the sum of the

records from both original datasets:

‘D| = |Dde’ + |Dch‘-

Taxonomic Filtering

The merged dataset comprises observations of 821 unique bird species, of which 497 and
708 species have been recorded in Switzerland and Germany, respectively. Collectively,
the dataset encompasses approximately 50 million individual sightings, equating to an
average of about 27,000 sightings per day. While this extensive dataset offers a wealth
of information, the volume significantly exceeds the processing capacity of available re-

sources.

Therefore, only a relevant species subset
s'cs

is chosen for deeper analysis, based on domain-expert recommendations. They iden-
tified 27 bird species as especially valuable for investigation based on their ecological
significance, population trends, or other relevant criteria. Additionally, species essential
for the quantitative analysis (see Chapter 5.2.2) were included based on ornithologists’
evaluations indicating that they had undergone significant changes in recent years. In
total, S” encompasses 184 out of 821 bird species available. They provide a focused yet
representative sample for the initial evaluation of the methodology. All subsequent steps

apply only to species s € 5.
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Spatial Discretization

For change point analysis, multiple sightings must be aggregated within a defined spatial
area to construct a cohesive time series from a collection of individual sightings. To
achieve this, each sighting is assigned to a standardized grid cell based on geographic
location (¢, A) (latitude ¢ and longitude \). To discretize the sighting locations, obser-
vations are aggregated into standardized grid cells defined by the European Environment
Agency (EEA)! in EPSG:4326, which references the WGS84 coordinate system. As a
balance between grid size, species density per grid cell, and computational complexity, a

50x50 km grid was selected.

To perform grid assignment, let G be the set of all 50 x 50km EEA grid cells covering
Germany and Switzerland. Each grid cell

geg

can be represented as a polygon poly(g) in WGS84 coordinates. Figure 4.2 shows all
selected grid cells of G.

"https://www.eea.europa.eu/en. Accessed on 26th Oct 2024
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Figure 4.2: Standardized 50x50 km grid cells covering Germany and Switzerland, pro-
vided by the European Environment Agency (EEA). Each cell serves as a
spatial unit for aggregating sightings per species, enabling the construction
of species- and grid-specific time series for detecting change points.

Each sighting record (s;,t;, ¢, A;) with species s;, timestamp ¢;, and location ¢;, \; is

mapped to exactly one grid cell g; for which:

(¢, Mi) € poly(g:).

Since each location belongs to exactly one 50 x 50 km cell, the assignment is unique.
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4.3.3 Time Series Construction

The primary goal is to detect temporal changes in bird sightings. Hence, the merged and
filtered records are transformed into time series defined per species—grid combination. To
achieve this, the number of sightings is counted for each combination of species, grid cell,
and date. Mathematically, the time series for each species-grid combination is defined

as:

S(Svg’t) :Zl(si = 5,9 :gyti:t)

i
where:
e S(s,g,t) represents the number of sightings for species s in grid cell g on date ¢,
e ¢ indexes individual sightings,
® s;,0;,t; are the species, grid cell, and date of sighting ¢, respectively,

e 1(-) is the indicator function, which equals 1 if the condition inside holds (i.e., if

the sighting matches the species, grid, and date), and 0 otherwise.

This results in continuous time series spanning the entire observation period for each
species-grid combination, providing a temporal framework for tracking occurrences and

detecting shifts in species presence over time.

An example time series for the Pygmy Owl sightings in a grid cell near Basel, Switzerland,
is shown in Figure 4.4a, illustrating this methodology for a single species within a defined

spatial area.

4.3.4 User bias correction

The factors described in Chapter 2.1.4 highlight that the true number of individuals
present cannot be accurately inferred from the number of daily sightings, as the data is
influenced by user bias. While most of these biases cannot be easily quantified, temporal
biases can be observed in the data itself. Figure 4.3a demonstrates that both Swiss
and German users tend to report sightings predominantly on weekends, leading to an
overrepresentation of sightings during these periods. Additionally, it is evident from

Figure 4.3b that users primarily record bird sightings in spring.
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Figure 4.3: Temporal distributions of submitted sightings in Germany and Switzerland

As detailed in Chapter 3.1, the SOPM abundance index is used to address user bias.

While

effective, adjustments were made for this thesis. First, data is aggregated weekly

instead of using pentads to account for temporal bias, as Ornitho users are more active on

weekends. Pentads would mix or omit weekends, causing inconsistencies. Additionally,

instead of using the maximum count, a sighting ratio—the percentage of days within a

week with at least one sighting—is applied. This prevents overestimation from isolated

large counts and ensures Change Point Detection is driven by consistent patterns rather

than outliers.
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To achieve this, the overall study period (i.e., 2018-2022) is divided into weekly intervals
Wi, Wo,...,Wx. For a given species s and grid g, define

Teg(Wn) = Z l(at least one sighting of s in g on day 7'),
TeWn

where 1(-) is the indicator function. Typically, |W,| = 7 days, so z, 4(W,) € {0,1,...,7}.
To mitigate user bias, a sighting ratio is defined:

Ts.9(Whn)

s Wn T
T 79( ) |Wn|

where:

o 1y 4(WV,) represents the fraction of days in week W), on which species s was observed

in grid g,
e z,,(WW,) is the number of days within W), where at least one sighting occurred,
e |W,] is the total number of days in the week (typically 7).

For a standard 7-day week, 75 4(W),) is the fraction of days in W), on which species s was

observed in grid g. By definition, the sighting ratio is bounded within the interval:

0<rsq(W,) <1

with

e 1y 4(IW,) = 0: no sightings in that week,

o 7. .(W,) = 1: sightings occurred every day of that week.
g ghting y day

This ensures the sighting ratio remains a normalized metric, preventing overestimation
from sporadic high counts while capturing consistent observation patterns. The impact of
this procedure on the time series is illustrated in Figure 4.4, using an example time series
of Pygmy Owl sightings. As shown, the time series after user bias reduction, depicted in
Figure 4.4b exhibits reduced fluctuations and fewer outliers when compared to its raw
state, as seen in Figure 4.4a. The value of each data point is consistently between 0

and 1, reflecting the proportion of days within each week where sightings were recorded.
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Unlike the number of sightings, which does not allow for inferences about the actual

abundance of the bird, the overall presence or absence and the regularity of sightings

are now emphasized. However, a notable drawback of this approach is the significant

reduction in the number of data points, which decreases by a factor of seven.
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(a) Raw time series, depicting the number of daily sightings over the obser-
vation period from January 2018 to December 2022.
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(b) Time series after user bias reduction, where data has been aggregated into
weekly intervals and converted into sighting ratios (proportion of days per
week where the bird was sighted).

Figure 4.4: Example time series of Pygmy Owl sightings in a 50x50 km grid near Basel,

Switzerland before and after user bias reduction.
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Summary

To detect and analyze temporal changes in bird sighting patterns across different regions,
a total of 184 bird species were considered, with each species analyzed individually to
capture species-specific trends and changes. The study area was divided into 50x50km
spatial grids. For each species, all grids where the species had been observed were

extracted, ensuring that the analysis was geographically comprehensive for that species.

The time series were constructed using data from January 1, 2018, to December 31, 2022.
Weekly intervals were used to provide a consistent temporal resolution and smoothing
out daily fluctuations. For each species-grid combination, a sighting ratio was calculated,
defined as the ratio of days per week where the respective species was sighted at least

once.

4.3.5 Change Point Detection (BEAST Analysis)

After preprocessing the data, aggregating sightings spatially into grid cells, and con-

structing weekly time series, a univariate weekly time series

Tsg = {(Wl’ Tsvg(Wl))’ R (WN> TS,g(WN))}

can be obtained for each species—grid pair (s, g). For each time series, the Bayesian Esti-
mation of Abrupt Change, Seasonality, and Trend (BEAST) (Zhao et al. 2019) algorithm
is applied to detect statistically significant shifts. It is available as open-source in the
corresponding package Rbeast? For mathematical details on the algorithm, please refer
to Chapter 2.2.3.

2https://github.com/zhaokg/, Accessed on 9th Feb 2025.
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Implementation Parameters

The following parameters were specified for the algorithm:

e Time Parameters:

— Start date: January 1, 2018

— End date: December 31, 2022

— Delta t: 7 days (weekly intervals)
e Priors:

— Seasonality: A period of one year is specified to account for annual seasonal
effects in bird sightings. This is used as the lowest harmonic order, i.e., the

fundamental frequency

— Accepted range of number of changepoints: A minimum of 0 and a maximum

of 10 change points for both the seasonal and trend components are allowed.

— Accepted minimal space between neighbouring changepoints: A minimum
spacing of one data point between neighboring change points is allowed for

both seasonal and trend components.

e Outlier Detection: Outlier detection is enabled to allow the model to identify

and account for anomalous data points.

e Number of MCMC samples to collect: A total of 8,000 MCMC samples are
collected during the analysis. This number is recommended to balance compu-
tational efficiency with the need for sufficient samples to accurately estimate the

posterior distributions of the model parameters (Rbeast Documentation 2019).

e Reproducibility: A fixed random seed is used to ensure consistent results across

runs.
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BEAST Results

For each time series 7T 4, BEAST outputs:

e The posterior median of trend change points, k.
e The estimated times {1,.. ., f/%} of these change points.
e Posterior probabilities P(#;) for each ;.

e Trend slopes m; at each time point ¢ in 7 .

These results are stored in a dataframe for subsequent postprocessing.

4.3.6 Postprocessing & Result Consolidation

For each time series 75 4, the median of the estimated number of change points k is used
to determine how many change points to consider. If k=0or k= NaN (e.g., due to

insufficient data), no trend changes are recorded.

Otherwise, each trend change point #; is further labeled as:

R ositive, if P(slope > 0) > P(slope < 0),
label(i;) = 3 P (slope > 0) > P(slope < 0)

negative, otherwise.

Based on this classification, the number of positive trend change points, indicating sudden
trend increases, is denoted as k4, with estimated times {ff, . ,t;:}, and the number of
negative trend change points, indicating sudden trend decreases, is denoted as k_, with

estimated times {;,...,%; }.

These change points are associated with their posterior probabilities P(¢) and P(t;),

indicating the confidence in each detected shift.

BEAST further provides the trend slope at each time point in the time series. Let m;
denote the estimated slope at time ¢t. The mean trend m is then computed as the average

of all individual slopes across the time series:

N

T

_ 1

m = E my
t=1
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where m; is the trend slope at time ¢, and T is the total number of time points in the
series. This metric provides an additional summary of the species’ temporal development

over the observation period.

All detected change points and relevant metadata are compiled into a unified dataset.

For each species-grid combination (s, g), this dataset includes:

e The number of positive trend change points, k., their estimated times {f+, cee fa }

and their posterior probabilities P(£]").

e The number of negative trend change points, k_, their estimated times {fl_, . tA,; }

and their posterior probabilities P(#;).
e The mean trend slope m

e A data availability flag indicating whether the time series 7, 4 contained sufficient

data for analysis.

By consolidating these results into a comprehensible dataset, further analyses can be
performed without re-running the entire pipeline. This was particularly important for
the implemented User Interface (see Chapter 4.3.7) where rapid access to results is nec-

essary.

4.3.7 User Interface

To facilitate the systematic exploration and analysis of species abundance, distribution,
temporal dynamics, and the identification of significant shifts (i.e., change points), an
interactive, web-based user interface was developed. This interface serves both as a tool
for subsequent evaluations and a potential resource for ornithologists and researchers in
related fields. It integrates data visualizations and statistical BEAST analysis, enabling

the detection and examination of change points and trends in bird sightings.

This chapter delineates the key components of the user interface, detailing the function-
alities and methodologies employed to analyze species data, filter change points, visualize
spatial and temporal trends, and conduct BEAST analyses. The user interface was built
with gradio® (Python). Figure 4.5 provides a screenshot of the entire application. The

individual components are presented and described in detail below.

3https://www.gradio.app/. Accessed on 9th Feb 2025.
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Figure 4.5: Overview of the user interface built with gradio.
description of each component, refer to the screenshots provided below.
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Species selection

Figure 4.6 shows the Species Selection field. It allows users to select the species to be
analyzed. Multiple selections are supported, enabling comparisons of change points and

trends across different species or identifying regions with a high concentration of change

points.
select species
Alpenschneehuhn Auerhuhn Bergente Berghanfling Bergpieper Braunkehichen Dreizehenspecht
Flussuferlaufer Gelbspotter Gansegeier Haubentaucher Karmingimpel Knakente Mittelspecht Orpheusspotter
Rohrammer Rostgans Schwarzkehichen Schwarzmilan Singschwan Sperlingskauz Steinschmatzer
Wasseramsel Wiesenpieper Zitronenzeisig (Zitronengirlitz) Zwergohreule Eisvogel Fahlsegler Feldsperling
Nilgans Seidensanger Trottellumme Turteltaube Zwergscharbe

select all

Figure 4.6: Species selection field. This component enables users to select one or multiple
species for analysis.

Change Point filters

Below the species selection, change points can be filtered (see Figure 4.7). These filters

directly impact the change point map, as described in Chapter 4.3.7.

select change point type select start date select end date

negative 2018-01-01 ] 2022-12-31 ]

Figure 4.7: Change point filters field. This allows to select the type and date range of
the change points to be shown in the change point heatmap.

Change Point Type With the first filter, users can specify whether to display positive
or negative change points. This distinction allows for targeted analysis of trends, enabling

researchers to focus on either growth or decline patterns.

Temporal Filtering Temporal filtering enables the restriction of change points to a
specific time interval within the overall study period of 2018-2022. Users can adjust the
timeframe with day-level granularity, allowing for precise temporal analysis. By default,
the entire period from 2018 to 2022 is selected.
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Map visualizations

This section encompasses all map-based visualizations, each presented as a heatmap with
data points corresponding to individual grid cells (see Figure 4.8). These visualizations
provide insights into the spatial distribution of change points, trends in sighting ratios,

and the number of sightings across the entire study period.

number of trend change points overall trend of sighting ratios number of sightings
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Figure 4.8: Map visualizations. This component shows the distribution of change points,
trends, and number of sightings for the selected species. As an example, maps
of the White-tailed Fagle are presented for the entire study period.

Number of change points This map shows the distribution of change points across
Germany and Switzerland. Depending on the selection in the change point filters (see
Section 4.3.7), either positive or negative change points are displayed for the chosen
species. Each colored grid cell indicates the presence of change points within the selected
timeframe, with color intensity representing the number of detected change points—the
darker the color, the higher the count. Hovering over a tile reveals detailed information,
including the grid ID, the number of change points, and the corresponding dates for each

change point.

Overall trend of sighting ratios This map presents the average trend slope of sight-
ing ratios over the entire period as a heatmap. Green tiles denote a positive trend, indi-
cating an overall increase in sighting ratios, while red tiles signify a negative trend, rep-

resenting a decrease. The intensity of the color reflects the magnitude of the trend—the
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darker the shade, the more pronounced the trend. White tiles indicate stability in sight-
ing ratios for the respective species within that grid cell over the study period. The exact

trend slope can be obtained by hovering over a tile.

Number of sightings The third map provides an overview of the absolute number
of sightings for the selected species from 2018 to 2022. Unlike sighting ratios, this plot
displays the actual count of sightings. Each grid cell indicates that the species was sighted
at least once, with lighter colors representing a higher number of sightings. Detailed

counts are accessible via the hover text on each tile.

BEAST analysis

The BEAST analysis component allows for a detailed examination of the time series and
its change points for an individual grid cell. It consists of three subcomponents: grid

selection, a change point timeline, and the BEAST results visualization.

Grid selection BEAST is designed to perform analyses on univariate time series; it
can process data from only one grid cell at a time. Consequently, users must select a
specific grid ID for analysis via the dropdown menu shown in the Figure 4.9 below. The
selection pool includes all grid cells where the chosen species have been sighted at least

once, ensuring that the analysis is relevant and data-driven.

select a grid id

50kmE4350N2850 -

Figure 4.9: Grid selection field. This allows to select the grid ID for which the BEAST
results are shown.

Change point timeline The change point timeline visualization displays the absolute
number of change points over the study period. If a single species is selected, this allows
for quick identification of when change points occurred. An example for this is shown in

Figure 4.10, where a single changepoint is shown in Summer 2020.
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Figure 4.10: Changepoint timeline. This shows identified change points of the selected
type over time.

However, this temporal representation is particularly valuable when multiple species are
selected for simultaneous examination, as shown in Figure 4.11. It enables the identi-
fication of coinciding change points across different species within the same region and
timeframe. Such patterns may suggest that the observed change points are not species-
specific but rather attributable to local environmental factors, such as landscape modi-
fications or weather variations. Identifying these non-species-specific change points can
provide deeper insights into broader ecological or climatic influences affecting multiple

species concurrently.
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Figure 4.11: Change point timeline when multiple species are selected. Exemplarily, the
timeline for a grid near Magdeburg, Germany is depicted.
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Visualization of BEAST results In the last component of the interface, the BEAST
analysis results for the specified species and grid are presented, providing detailed insights
into the temporal dynamics of the species’ sighting ratios. These results include the
sighting ratios over time, the decomposition of this time series into seasonal and trend

components, and the identification of change points within both components.

Figure 4.12 below shows an exemplary visual output of the BEAST algorithm. This
output can be directly generated using the Rbeast package.
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Figure 4.12: An exemplary output from BEAST. This analysis pertains to the White-
tailed Fagle within a 50x50km grid near Ingolstadt, Germany.

At the top, depicted in black, is the input time series, where the sighting ratio is plotted
over the observation period. In this instance, the time series represents the sighting
ratios of White-tailed Fagles within a grid near Ingolstadt, Germany. The data cover the
observation period from 2018 to 2022. Each entry in the time series indicates the ratio

of days per week during which at least one eagle sighting occurred.

In red below is the seasonal component identified by BEAST, along with the estimated

probability of an existing seasonal change point, denoted as Pr(scp). The seasonal
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component demonstrates regular fluctuation between summer and winter months, ac-

companied by a credible interval surrounding the assumed seasonal curve.

In green is the estimated trend component, as well as the estimated probability of an
existing trend change point, denoted as Pr(tcp). A notable increase is observed in autumn
2020. At the peak of the probability curve, which results from the averaging of multiple
models through Bayesian Model Averaging (BMA), BEAST identifies a change point,
marked by a vertical black line. Since the trend does not exhibit an abrupt increase but
rather extends over several months, BEAST indicates that the precise location of the
change point may not be exact but is likely probabilistically distributed within the range

of the increase.

Beneath these main components, additional information is provided regarding the slope
sign, outlier analysis, and the residual or error component, which comprises data points
that BEAST could neither assign to the seasonal nor to the trend component and did not
classify as outliers. The slope sign is visually represented as sipsgn. In this panel, the
upper red portion indicates the probability of a positive trend slope, the middle green
portion the probability of a zero slope, and the lower blue portion the probability of a
negative trend slope (Rbeast Documentation 2019). The outlier analysis highlights data
points that BEAST has detected as outliers.

4.3.8 Summary

In summary, the software framework follows a modular design that separates data ac-
quisition, aggregation, and preprocessing from the core BEAST analysis. Postprocessing
and an interactive user interface complete the workflow, enabling transparent and re-
producible detection of spatio-temporal shifts in citizen-science bird sighting data. The
chosen approach satisfies both functional and non-functional requirements, offering scal-

ability, maintainability, and user-friendliness.
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5 Evaluation

The BEAST algorithm has been previously evaluated on diverse datasets by its develop-
ers and independent researchers. These studies have demonstrated satisfactory accuracy
and have shown that BEAST outperforms similar algorithms employing best-model ap-
proaches (Li et al. 2022).

However, two gaps in the application of change point detection methods to citizen sci-
ence data were identified (see Chapter 1). First, no dedicated study currently inves-
tigates the performance of CPD algorithm—such as BEAST—on citizen science data.
This gap is significant because citizen science data may contain inconsistencies or biases,
which could affect the algorithm’s ability to capture genuine real-world phenomena. The
second challenge is the insufficient involvement of domain experts in most existing stud-
ies. Consequently, the perceived trustworthiness and practical value of BEAST from a
domain-expert standpoint have not been thoroughly explored, despite being critical fac-
tors in determining whether the algorithm will be adopted and relied upon in real-world

