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Kurzzusammenfassung
Trotz großer Fortschritte von großen Sprachmodellen (LLMs) der letzten Jahre in praktischen

Anwendungszenarien leiden LLMs an Halluzinationen und Biases. Mit retrieval augmented

generation (RAG) werden den Sprachmodellen zur Laufzeit eine Faktenbasis übergeben, auf

die sie sich beziehen können. Bei Knowledge Graphen (KG) basiert dieser Prozess auf graph

representation learning (GRL), einem Aufgabenfeld, welcher die Strukturen von Knoten und

Kanten der Graphen auf niedrigsdimensionale Vektorräume abbildet. Die sogenannten knowled-

ge graph embeddings (KGEs) bilden dabei die strukturelle Einbettung von Knoten und Kanten

dieser KGs ab. In dieser Arbeit trainieren wir ein BERT-Modell auf die Klassifikationsaufgabe:

link prediction. Wir weisen nach, dass sich die Performance steigert, wenn dem BERT-Modell

nicht nur die natürlich sprachigen Elemente des KG übergeben werden, sondern vorverarbeitete

KGEs, die von graph neuronalen Netzen (GNN) generiert worden sind. Wir untersuchen dann

mit Hilfe von explainable AI (XAI) Methoden die inneren Zustände und Verhaltensweisen des

BERT-Modells. Es stellte sich dabei heraus, dass BERT die aus dem GNN generierten KGEs

nur teilweise zu interpretieren vermag. Dabei unterschied das Modell zwischen verschiedenen

Strategien, zwischen denen es anhand weniger offensichtlichen Faktoren entschieden hat. Als

eine der wichtigsten Einflussfaktoren stellte sich die Konnektivität von Knoten heraus.
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Abstract
Despite major advances in large language models (LLMs) in recent years in practical scenarios,

LLMs suffer from hallucinations and biases. With retrieval augmented generation (RAG), the

language models are given a fact base at runtime to which they can refer. For knowledge

graphs (KG), this process is based on graph representation learning (GRL), a task field that

maps the structures of nodes and edges of the graphs to low-dimensional vector spaces. The

so-called knowledge graph embeddings (KGEs) represent the structural embedding of nodes

and edges of these KGs. In this work, we train a BERT model on the classification task: link

prediction. We prove that the performance increases when the BERT model is not only given

the natural language elements of the KG, but also preprocessed KGEs generated by graph neural

networks (GNN). We then use explainable AI (XAI) methods to examine the internal states and

behaviors of the BERT model. It turned out that BERT is only partially able to interpret the

KGEs generated from the GNN. The model distinguished between different strategies, between

which it decided on the basis of less obvious factors. One of the most important influencing

factors turned out to be the connectivity of nodes.
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1 Introduction

Large language models (LLMs) such as GPT4 (OpenAI [2023]), Llama3 (Llama Team and

AI @ Meta [2024]), Gemma2 (Gemma Team and Google DeepMind [2024]) or Deepseek

(DeepSeek-AI [2025]) have shown great success in recent years and promise application in many

real-world scenarios. Despite the success of LLMs, critical sources of error, such as halluci-
nations, producing information that is plausible but factually incorrect (Perković et al. [2024],

Fernando et al. [2024]) and biases, where the prediction distribution may not reflect human

values and social contracts and deviates from a subjective distribution (Fernando et al. [2024]),

still need to be eliminated. One promising approache to combat hallucinations is retrieval
augmented generation (RAG), a technique in which a retriever extracts factual knowledge

belonging to a given context from knowledge databases at runtime and makes them available to

the LLM (Gao et al. [2023]). The extraction process usually involves mapping the individual

sections of the knowledge base to low-dimensional vectors. During extraction, the retriever maps

the context to the same dimension and uses a scoring function to search for content that appears

similar to the context. The highest scoring content is then passed to the LLM as a knowledge

base (Liu [2022]).

Knowledge graphs (KGs) are a special form of knowledge database in which (partially) natural

language entities are modeled as nodes and their relationships as edges in a structured graph

(Ji et al. [2022]). In graph representation learning (GRL) low-dimensional vector representa-

tions of nodes, edges or (sub)graphs, sometimes referred to as knowledge graph embeddings
(KGEs), are created, which take into account graph properties such as topology and neighbor-

hoods (Khoshraftar and An [2024], Cao et al. [2024]). Combining GRL and RAG is an active

field of research and promises to incorporate structural relationships within the graph when

selecting relevant nodes (Sophaken et al. [2024], Dong et al. [2024]). The integration of GRL

into LLMs is a relevant research focus because LLMs themselves are often used as retrievers

in RAG (Karpukhin et al. [2020], Khattab and Zaharia [2020]) and LLMs have difficulties

processing structural information from graphs due to their sequential nature in data processing

(Khoshraftar and An [2024], Wu et al. [2023]). The reasons mentioned above speak in favor of

investigating the inclusion of GRL in LLMs in more detail.

1



1 Introduction

The capabilities of state of the art LLMs are measured as black-boxes by performance in

benchmark data sets and human evaluation (OpenAI [2023], Llama Team and AI @ Meta [2024],

Gemma Team and Google DeepMind [2024], DeepSeek-AI [2025]). In many areas, however,

higher confidence requirements are placed on the behavior of LLMs. It has to be possible to

understand how LLMs solve the task assigned to them and which criteria they pay attention to

(Mohammadkhani et al. [2023], Kokalj et al. [2021]). The research field of explainable AI (XAI)

is concerned with investigating and explaining the behavior of artificial intelligence (AI). The

models under consideration, such as LLMs, are difficult to understand due to their complexity

and the immense training effort with billions of training data. In order to strengthen trust in the

technology and to ensure fairness and possible regulations on responsibility, AI models must be

examined for their basic mechanisms in their decision-making and made comprehensible to the

user (Kamate et al. [2024], S et al. [2024]). Best to our knowledge there is only one scientific

publication using XAI methods to understand the integration of GRL in LLMs in detail (Li et al.

[2024]).

The actual learned properties of GRL confronted LLMs have been insufficiently studied in

existing research, best to our knowledge. That is why we dedicate this thesis to this research

topic. We use a simple example to show how a transformer model reacts to KGEs in the context

of a typical GRL task. In doing so, we confirm the assumption that LLMs can benefit from KGEs

when performing GRL tasks. Furthermore, we show that one of the biggest influencing factors in

the processing of the transformer in our experiments is an unknowingly created artificial bias in

the dataset used. We argue that this bias was unnoticed, as it is not relevant from the perspective

of GRL, but is relevant in the modality switch to natural language processing (NLP). Building

on this, we argue that this kind of effect can be particularly relevant when edges and nodes are

passed to LLMs using Graph RAG. There is a lot to be said for passing KGEs to the LLM in

addition to the found natural language portions, so that the LLM can also interpret the context of

nodes and edges. Our experiments have shown that passing KGEs to the LLM has increased the

effect of said bias, which allowed us to identify them more effectively.

Link prediction is a typical GRL task, which aims to predict the source (head entity) si

or target (tail entity) node ti of missing triplets (si, r, ?) or (?, r, ti) for given query relation (edge)

r (Khoshraftar and An [2024], Cao et al. [2024]). This task can reformulated as a classification

task to determine whether an edge exists between two nodes (Khoshraftar and An [2024]). In

the experiments in this thesis, we focused on the link prediction task, as it is a GRL task that can

2



1 Introduction

be easily transferred to NLP.

Our implementation of the GRL component is a modification of the link prediction tutorials1

published by Pytorch Geometrics (PyG) (Fey and Lenssen [2019]), in which the authors train

a GraphSage model (Hamilton et al. [2017]) to create KGEs for the task of link prediction on

the MovieLens dataset (Harper and Konstan [2015]). This dataset represents a social network in

which users rate movies they watched. Because this dataset is large, coming from a real-world

scenario and contains natural language node properties, it is well suited for our use case as a

representative. GraphSage (Hamilton et al. [2017]) is a well established Graph Convolutional
Network (GCN) (Ren et al. [2024], Liu et al. [2024a]), that uses local neighborhood sampling

to generate node embeddings. The method of local sampling makes GraphSage scalable for

large graphs (Bilot et al. [2024]). The PyG link prediction tutorial delivered a well documented,

simple and publicly available implementation of a GRL processing pipeline, which is why we

chose this pipeline as a starting point for our GRL component.

The LLM of our choice is BERT-Tiny (Turc et al. [2019]). This model is a scaled version of

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al. [2019]).

We integrate the KGEs into the input vectors of a BERT encoder model (Devlin et al. [2019])

using the GraphPrompter (Liu et al. [2024b]) architecture. In the GraphPrompter architecture,

KGEs are concatenated to the input vectors of the LLM via soft prompts (Ng et al. [2024]). We

have embedded the optimized implementation in the Python Hugging Face stack (Wolf et al.

[2020], Lhoest et al. [2021]). The resulting tool suite can be accessed publicly on our GitHub2.

1Link to the tutorials: https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html
2Link to GitHub: https://github.com/AhmadHAW/Hauptprojekt

3



2 Related Work

2.1 Large Language Model (Transformer)

In recent years the use of transformer architecture, commonly refereed to as LLMs, have shown

great success in numerous natural language processing (NLP) tasks, such as question answering,

commonsense reasoning, mathematics and science, and coding OpenAI [2023], Gemma Team

and Google DeepMind [2024], Llama Team and AI @ Meta [2024]. LLMs are made up of

billions of trainable parameters and are trained on massive text datasets (B et al. [2024]). The

use of LLMs has already spread into multiple domains like education (Laato et al. [2023]), law

(Cheong et al. [2024]), healthcare (Kuzlu et al. [2023], Yang et al. [2024]), finance (Ni et al.

[2024]), coding (Fan et al. [2023]) and robotics (Chen et al. [2024a]).

2.1.1 Transformer (Encoder) Architecture

Before the transformer architecture, NLP was largely dominated by recurrent neural networks

(RNN), long short term memories (Hochreiter and Schmidhuber [1997]) and gated recurrent

neural networks (Chung et al. [2014]). However, the strict sequential processing caused memory

issues on longer sequences and models were not able to learn dependencies between distant

positions (Vaswani et al. [2017]). In the widely used encoder-decoder architecture, the encoder

read an input prompt and mapped it to a vector with a fixed length, which the decoder read and

generated the output from (Bahdanau et al. [2014]). This approach also had its difficulties with

long input records because the size of the encoder output vector is fixed (Bahdanau et al. [2014],

Cho et al. [2014]). The attention mechanism made it possible to learn dependencies between

positions in the input and output prompt and thus to focus on specific information within the

input prompt while decoding (Niu et al. [2021]).

Vaswani et al. [2017] (first released 2017) were one of the first who got rid of the RNN

and realized a model architecture, that fully relies on the attention mechanism instead.

4



2 Related Work

Figure 2.1: The Transformer - model architecture. Reprinted from Attention is All you Need., by
Vaswani et al., 2023, Copyright 2023© by Google. Reprinted with permission.

Figure 2.1 describes their proposed model architecture called "transformer". The encoder maps

given input sequence to a continues representation space, which is then passed to the decoder

to produce the output sequence. The encoder uses 6 stacked layers of multi-head self-attention

sub-layer followed by a fully connected sub-layer. Residual layers (He et al. [2016]) are placed

around each sub-layer followed by layer normalization (Ba et al. [2016]). The inputs are first

transformed to input tokens (input embedding) of dimension dH = 512 (hidden size) using a

learned weigh matrix. Then the positional encoding is added to the input embedding, because

the model contains no recurrence or convolution and would not be able to make use of the order

of the sequence.

5



2 Related Work

Figure 2.2: Scaled dot-product attention (left). Multi-head attention consists of several attention
layers running in parallel (right). Reprinted from Attention is All you Need., by
Vaswani et al., 2023, Copyright 2023© by Google. Reprinted with permission.

Figure 2.2 (left) describes one self-attention head in detail. Each self-attention head computes

the weighted sum of a value (V), where the weight is computed by a compatibility function of

the query (Q) with the corresponding key (K). The value dimension is dv and the query and keys

dimensions are each dk. The weights (attention) is computed by the dot product of all keys and

the query, then scaled by
√

dk and last applying a softmax function. A last dot product is applied

to the weights and their values. This attention function is computed on matrices in parallel,

resulting in

Attention(Q,K,V) = so f tmax(
QKT

√
dk

)V

Figure 2.2 (right) shows how instead of performing a single attention function, multiple attention

functions are first computed in parallel, concatenated and then linear projected. Also for each

parallel self-attention head, a separate linear projection is learned and applied to the inputs for

query, keys and values, resulting in

MultiHead(Q,K,V) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i ,KWK

i ,VWV
i )

where the projections are parameter matrices WQ
i ∈ R

dH×dk , WK
i ∈ R

dH×dk , WV
i ∈ R

dH×dv and

WO ∈ Rhdv×dH . The authors chose to work with h = 8 parallel attention layers, resulting in

dk = dv = dH/h = 64.

Each multi-head self-attention sub-layers follows a fully connected feed-forward-network
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(FFN), which is applied to each position separately and identically. The FFN consists of two

linear transformations with ReLU activation in between, resulting in:

FFN(x) = max(0, xW1 + b1)W2 + b2

The dimensionality of the input layer is dH = 512 and d f f = 2048 in all inner layers.

The model was trained on a large English to German translation dataset and resulted in (then)

state of the art translation performance.

Figure 2.3: The self-attention process as in Attention is All you Need.,
by Vaswani et al., 2023

Our interpretation of the transformer architecture by Vaswani et al. [2017] illustrated in figure

2.3 illustrates not only the mathematical process of self-attention, but also the semantic meaning

behind the vector representations produced. In our example “I left on the left side”, we focus
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on the meaning of the homographic words1 “left” within the vector representation. First the

encoded words2 are transformed into values, keys and queries with the linear projections. We can

assume that the values of the words "left" (v2 and v5) are similar to each other at this point. The

main difference in their semantic meaning is computed by the self-attention process. Here the

first position of the word "left" (h1) is paying high attention to the word "I", which indicates, that

the word "left" can be interpreted as the conjunction of the word "leaving". The attention process

is illustrated in detail on the second position of the word "left. Here we assume, that the position

is paying high attention to the word "side", because it indicates that "left" can be interpreted as

a direction. If the attention (weight) for this position is great, then the dot product of key and

value must have been great and this can only be the case, if the similarity between key and value

vectors were great. In other words: The transformer learns to produce the linear projections of

words to be similar, if they are highly contextual dependent. Here the only difference of the

query vectors of "left" were the positional encodings, that were added before. These encodings

made sure, that the relative positions of "I" and "side" were taken into consideration.

The resulting vector representations of all attention heads are then concatenated and passed into

a FFN for each position. So the FFN takes all views of contextual dependencies and generates

vector representations of the words in their context. Here we can assume, that the word "left"

will be represented as the verb in the first position and as the direction in the second position.

We can also assume that for more complex and deeper levels of transformer architectures, the

vector representations will become semantically richer.

2.1.2 BERT

Pre-Training LLMs has shown great success in improving the performance of many specific

downstream tasks (Peters et al. [2018], Radford and Narasimhan [2018]). The authors of textbf-

BERT (Devlin et al. [2019]) applied two pre-training techniques to the transformer architecture

(Vaswani et al. [2017]). They have shown, that the encoder part of the transformer can be taught

to produce semantically rich embeddings of text tokens only by pre-training on a large unlabeled

textual corpus. These pre-trained foundation models are then applicable to specific downstream

tasks by little modifications on the model architecture and relatively little effort in finetuning.

The first pre-training task applied on large corpus of text data was masked language modeling
(MLM), a training technique inspired by "cloze task" (Taylor [1953]), in which text tokens are

randomly masked in the input sequence by replacing them with the specialized token [MASK].

1Words that have the same spelling but different meaning.
2This is a simplification of the encoding process. Here we assumed that each word is encoded as one vector, though

in reality longer words will be represented by multiple vectors.
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The transformer model was then trained on predicting the masked token. For that, the output

vector representations of the masked token positions are passed through a softmax layer.

The second pre-training task applied to BERT was next sentence prediction (NSP). The authors

divided the text corpus into sentence pairs, where each pair is a consecutive sentence pair in

the text corpus. Then they switched 50% of the second sentences with random sentences and

made BERT predict, if the second sentence actually follows the first sentence. For that, they

introduced two additional special tokens. The [SEP] token is used to separate the sentence pair

in the token sequence and to mark the end of the token sequence. The token [CLS] is added

at the beginning of the token sequence and is used for classification tasks, by only passing its

output vector representation to an output layer for classification.

The authors also added segment embeddings to the input embeddings in addition to the posi-

tional encoding. These embeddings allow the LLM to separate the sentences in next sentence

prediction even better. The positional encodings became positional embeddings by replacing

the encoding function with a trainable linear projection. The authors also added more layers of

multi-head attention blocks to the architecture. They increased the number of parallel attention

heads and the size of the internal vector representation.

BERT was trained on top of the WordPiece embeddings method (Wu et al. [2016]) who’s

behavior has been thoroughly investigated in scientific research (Clark et al. [2019], Rogers et al.

[2020], Tenney et al. [2019], Jiang et al. [2021], Hewitt and Manning [2019], Goldberg [2019],

Coenen et al. [2019]). We illustrate the MLM pre-training procedure in BERT (Devlin et al.

[2019]) using figure 2.4. In this example, the word “is” is masked at token ID level with the

[MASK] token. In addition to the positions, a segment is assigned to each token. In this case,

each token has the same segment. Token IDs, positions and segments are then mapped to their

embedding using FFNs, which are then added together in the next step. The main body of BERT

corresponds to the transformer architecture as introduced by Vaswani et al. [2017], but with the

encoder only part and the corresponding size changes. The encoder produces output vectors for

all tokens, including the mask token. We can assume that the mask token in the output layer

combines the semantic context in which it is located and thus carries enough information to infer

the masked token. The resulting embedding of size 786 is then scaled up in a linear projection

in a likelihood over the token dictionary and then passed into a softmax, resulting in a ranked

order of tokens to be placed into the masked token position. This training teaches the model to

produce semantic contextual embeddings at each position.
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Figure 2.4: Masked language modeling in BERT illustration. Adapted from BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding, by Devlin et al.,
2019

Figure 2.5: Next sentence prediction in BERT illustration. Adapted from BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding, by Devlin et al.,
2019

Figure 2.5 illustrates the NSP process. This time, each sentence is assigned to a segment 0

or 1. Their segment embeddings are also adapted accordingly. The output embeddings of the
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classification token (C) summarize the relationship between both sentences and is passed to

a linear projection an scaled down to the classification outputs IsNext or NotNext. Again, the

output is passed into a softmax to find the classes with highest likelihood.

We can summarize, that BERT is trained on the tasks MLM and NSP. MLM teaches the model

in generating semantic contextual embeddings of singular tokens, while NSP trains the model to

generate semantic contextual embeddings of token groups.

Bert-Tiny (Turc et al. [2019]) is a compact version of BERT (Devlin et al. [2019]) using

the principles of knowledge distillation (KD) (Hinton et al. [2015]) drastically reduces the pa-

rameter size without significantly reducing performance. The set of 24 BERT model miniatures

released by Turc et al. [2019] are all based on the transformer architecture (Vaswani et al. [2017])

and trained similar but not equally as BERT (Devlin et al. [2019]). Given the larger teacher

model BERT (Devlin et al. [2019]) and the compact student model BERT-Tiny the student model

is trained on the soft labels of the teacher model after the extensive pre-training. Soft labels are

the output distributions for any given forward pass. The pre-training makes sure, that the student

model learns to produce meaningful embeddings in the first place and then the student learns to

imitate the confidence distribution of the teacher, even on unseen data (Turc et al. [2019]).

2.2 Graph Representation Learning

KGs became more prominent in NLP, in the hope of providing LLMs with a comprehensible

knowledge base to refer to (Abu-Rasheed et al. [2024]) and enable them to process complex

relationship structures between entities (Liang et al. [2024]). Processing KGs often includes

GRL, a fundamental task that aims to encode high-dimensional graph structures into low-

dimensional vector representations (Ju et al. [2024], Khoshraftar and An [2024]). Because KGs

encode structured factual knowledge with multi-relational edges (Cao et al. [2024]), multi-modal

nodes (Sun et al. [2020]) and follow logical rules, constraints and ontologies, we call the low-

dimensional vector representations of KGs Knowledge Graph Embeddings (KGEs) (Cao et al.

[2024]).

2.2.1 Knowledge Graphs

Knowledge Graphs (KGs) are structured data where entities are in relation with each other and

facts (datapoints) are denoted as a triple (h,r,t), where h represents the head (source node), r the

relation (edge) between nodes and t the tail (target node) (Ji et al. [2022]). A knowledge graph

can store and represent factual knowledge, like semantic networks (Miller [1995]), common
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sense (Ilievski et al. [2021]), social networks (Alonso et al. [2019], Harper and Konstan [2015]),

academic networks (Tang et al. [2008], Sinha et al. [2015]), molecule graphs (Wu et al. [2018])

or traffic networks (Cui et al. [2019]).

Harper and Konstan [2015] provided a rating data set from the MovieLens web service3, that

has been collected and made available by GroupLens Research. The dataset provides 32 million

ratings and two million tag applications applied to 87,585 movies by 200,948 independent users

over time, collected in 2023 and released 2024.

Each user is represented by artificial integer ids. Each movies is represented by an artificial

integer id, a title (with release year), a list of genres and tags. The tags were provided and rated

by the user as well. Each rating of a movie by a user is saved with its timestamp. Rating a

movie results in a fact of shape (user,rating,movie,timestamp). This triggers the web service

recommends other movies, based on the users history (facts).

2.2.2 Link Prediction

One of many GRL downstream tasks is link prediction, with the goal of identify missing entities

in fact triplets like (h,r,?) or (?,r,t) (Akrami et al. [2018]). Link prediction algorithms are often

based on node similarity, where the similarity score between two nodes defines the likelihood of

an edge between them (Xu and Yin [2017]).

The similarity for KGs can be defined in many ways, depending on the actual downstream

task. A common similarity factor is structural similarity, where nodes that share the same

neighborhood or common connectivity patterns are considered similar (Yu et al. [2024]). The

similarity between two vectors can be measured with the dot product between those vectors

(Cao et al. [2024]). A popular method of comparing sentence embeddings is cosine similarity,

a normalized version of the dot product between two vectors (Reimers and Gurevych [2019]).

The combination of both the structural view and a natural language view is an ongoing research

field with promising outcomes (Dong et al. [2024]).

2.2.3 Graph Neural Networks

A graph neural networks (GNN) is based on information diffusion, where a set of units

exchanges information in a graph structure, representing each node individually. These units

update their state according to the graph structure until they reach a unique stable equilibrium

(Scarselli et al. [2009]).

3https://movielens.org
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The Graph convolutional network (GCN) is based on GNNs and a variant of a convolutional

neural network (CNN). Instead of a kernel sliding over pixels, a node aggregates features from

its neighbors (Kipf and Welling [2016]).

One common concept for aggregating node embeddings is the message passing concept: Given

a node i at each layer l + 1, the node representations of i are updated with the following formula:

hl+1
i = f (hl

i,
∑

j∈N(i)

g(i, j))

where f and g are learnable functions, N(i) are the neighbors of node i and h0
i are the node i

initial features. The GNN aggregates the embeddings of the neighbor nodes at each layer with

hL
i the final representation of node i aggregated with neighbors L hops away (Khoshraftar and

An [2024], Liang [2023]).

GraphSage (Hamilton et al. [2017]) is one interpretation of this message passing concept and

implements the algorithm the following way:

h
′

i = W1hi + W2 ∗ mean j∈N(i)h j

where h
′

i is the nodes features after aggregating over the sample neighborhood N(i) with the

trainable weight matrices W1 and W2. GraphSage encourages nodes with edges to be similar

while enforces the representations of disparate nodes to be highly distinct (Hamilton et al.

[2017]).

Figures 2.6 illustrate the GraphSage representation learning process as described in Hamilton

et al. [2017]. On figure 2.6a we can see the process of sampling nodes over 2 hops where the

amount of neighbors sampled in the first hop is 3 and the amount of neighbors sampled in the

second hop is 2. In this example we sampled around the central node (yellow). As we can see,

not all neighbor nodes of yellow are sampled. Each edge that was traversed during that hop (red)

is also sampled. The second hop has multiple effects illustrated. The orange node in the bottom

samples two neighbor nodes in the second hop (blue). The orange node on the left samples only

one new neighbor node (blue), because it is possible that the edge that was just traversed in the

first hop is traversed back, counting as one sample. With the second sample to the bottom left

blue node, the neighborhood samples for the left orange node is at it’s limit. The orange node at

the top also samples 2 new blue nodes. That resulted in the edge between the two top orange

nodes not to be sampled in the sampled neighborhood.

Figure 2.6b illustrates the aggregation process of nodes inside the sampled neighborhood. First,

each node initializes it’s vector representation hi. Then each vector representation is multiplied

13



2 Related Work

(a) GraphSage sampling first
hop 3 neighbors, second
hop 2 neighbors

(b) GraphSage convolutional layers ag-
gregate node representations

(c) GraphSage bor-
der nodes

Figure 2.6: GraphSage sampling and aggregation process. Adapted from Inductive Representa-
tion Learning on Large Graphs, by Hamilton et al., 2017

by the learned weight matrices W1 and W2. For each node the vector representations h′i are

computed by adding the weighted vector representations to each other, while the weighted

vectors of local neighbor’s nodes are averaged. The smaller sub-graphs represent the local

neighborhood of each node. In the first hop, the yellow node considers the vector representation

of it’s direct neighbors (orange). In the second hop, h′′i is computed by aggregating the weighted

vector representations of the (already) aggregated neighborhood nodes h′i (orange). These

aggregations already contain the local neighborhood’s information. This way the blue node’s

vector representations indirectly influence the yellow node’s vector local neighborhood structural

vector representation.

Figure 2.6c illustrates the local neighborhood effect on nodes, that are less connected and can

be considered at the border of a cluster. These nodes will have a chance (depending on the

graphs structure) to learn a vector representation, that relates them to the rest of the cluster. This

behavior will become more important, if we compare them to transformer models processing

graph structures on a textual semantic view.

2.3 Transformer in GRL

There are multiple arguments to consider transformer models self-attention mechanism (Vaswani

et al. [2017]) as a special procedure of fully connected implicit GRL (Wu et al. [2023]). Trans-

formers show great potential in GRL, especially in the processing of text-based KGs. However,
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the widely used pre-trained transformer models are said to have many disadvantages when

dealing with graphs. On the one hand, most transformer models are not pre-trained in GRL tasks,

which reduces their understanding of graph structures even after fine-tuning. In addition, the

processing of large graphs does not scale if the graph structures are passed as prompt input (Chen

et al. [2024b]). Using LLMs in GRL will therefore require intensive changes to the architecture

and/or pre-training.

There are multiple strategies of mixing GNN architectures with transformer architectures.

There are graph transformers (Yun et al. [2020]), who use the attention mechanism in their GNN

architecture. There are also three other strategies in the cooperation of GNN and transformer

models: transformer as predictor and GNN as encoder (Jin et al. [2024], Chen et al. [2024b], Liu

et al. [2024b]), transformer and GNN alignment Jin et al. [2024], Chen et al. [2024b], Tang et al.

[2024], and transformer as encoder and GNN as predictor (Jin et al. [2024], Chen et al. [2024b]).

(a) Transformer as
predictor and
GNN as encoder.

(b) Transformer and GNN alignment with either
pseudo-labels or contrastive learning.

(c) Transformer as encoder
and GNN as predictor.

Figure 2.7: Strategies fusing the strengths of transformer models and GNNs. Adapted from
Large Language Models on Graphs: A Comprehensive Survey,
by Jin et al., 2024

Figure 2.7 illustrates three strategies that combine the strengths of GNN’s GRL processing

and transformers NLP. Figure 2.7a illustrates the first strategy, in which the transformer is the

predictor and the GNN is encoding the graph structure via GRL. This encoding is then passed

to the transformer in combination with the natural texts of the graph for processing (Jin et al.

[2024], Liu et al. [2024b]). Figure 2.7b illustrates two strategies for aligning GRL with NLP via

either Pseudo-Labels, that the transformer and GNN generate for each other or via contrastive
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learning, in which the respective encodings are aligned with each other (Jin et al. [2024], Tang

et al. [2024]). The last figure 2.7c illustrates the strategy of placing the GNN as the predictor

and the transformer encoding the text via NLP (Jin et al. [2024], Chen et al. [2024b]).

Liu et al. [2024b] provide an architecture for the transformer as predictor interaction, us-

ing the soft prompt approach.

Soft prompts belong to the family of prompt tuning methods, which allow LLMs to be trained

on multiple downstream tasks without excessive training. Instead, the main models parameters

are being frozen and for each downstream task a separate set of embeddings is randomly initial-

ized. Only these separate embeddings and their parameters are trained on labeled data (Lester

et al. [2021]).

Figure 2.8: GraphPrompter architecture on the task of link prediction adapted from Can we Soft
Prompt LLMs for Graph Learning Tasks?, by Lio et al., 2024 and BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding, by Devlin et al.,
2019

Liu et al. [2024b] uses the same approach in their GraphPrompter architecture as depicted in

2.8, but instead of initializing random embeddings for each downstream task, the KGEs of the
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GNN are passed to the transformer instead. The whole setup is trained end-to-end, while the

transformer’s parameter are kept frozen. Every KGE is concatenated into the input embeddings,

which are then processed by the transformer for the downstream task link-prediction.

2.4 Explainable AI on LLMs

AI is becoming an increasingly important part of our daily lives. High-performance deep neural

networks, such as LLMs, are becoming increasingly complex and less transparent (Singh et al.

[2024], Volkov and Averkin [2024], Zhao et al. [2024]). In order to strengthen trust in this

technology, ensure fairness and comply with regulations, experts and laypeople must be able to

understand and explain the underlying mechanisms and decision-making processes of AI models

(Zhao et al. [2024]). LLMs in particular often struggle with hallucinations (Zhao et al. [2024],

Volkov and Averkin [2024]) and biases (Fernando et al. [2024]). The scientific community has not

yet agreed on a fixed definition for explainable AI (XAI), but we can assume that XAI is a set of

techniques that achieve the above-mentioned goals of explainability (Speith [2022]),[Tropmann-

Frick et al., 2024, Chapter 3]. Most XAI methods can be categorized into a local or global
scope, where a model is explained locally a single prediction or globally the whole model (Speith

[2022]),[Tropmann-Frick et al., 2024, Chapter 3] and model-specific or model-agnostic, where

model-specific XAI methods are designed for specific models and model-agnostic XAI methods

can be applied to all models (Speith [2022], Zhang et al. [2024]),[Tropmann-Frick et al., 2024,

Chapter 3].

XAI methods for LLMs can further be labeled as classifier-based probing, where a shallow

classifier is trained on top of an LLM that outputs certain linguistic properties and reasoning

abilities. Then vector representations of the LLM are studied to measure the embedded syntax
and semantic knowledge Zhao et al. [2024], Volkov and Averkin [2024]. Another possible

XAI methods on LLMs are concept-based explanations, where the input texts are mapped to a

set of concepts and the importance for each pre-defined concept can be measured (Zhao et al.

[2024], Mohammadkhani et al. [2023]).

2.4.1 Attention Based

The most common, intuitive, model-specific and local explanation methods are attention based.

This approach leverages the LLM’s multi head attention layer and analyzes the attention weights

between positions in between layers (Mohammadkhani et al. [2023], Vig [2019]). These

attention maps can be visualized in bipartite graphs (Zhao et al. [2024], Vig [2019]) or heat-

maps (Zhao et al. [2024], Mohammadkhani et al. [2023]).
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In Mohammadkhani et al. [2023] the authors conducted an empirical study to analyze code

models on three domain specific downstream tasks. For that they mixed the local attention

based method with concept-based explanations. They grouped input tokens of coding tasks

into semantic meaningful groups, like method name, input variables .... The resulting attention

scores gave them global insights over how certain semantic groups affect the models prediction

the most.

2.4.2 SHAP

SHapley Additive exPlanations (SHAP) (Lundberg and Lee [2017]) is a popular model-

agnostic and local XAI method (Volkov and Averkin [2024], Zhao et al. [2024]). SHAP

(Lundberg and Lee [2017]) treats features of the input sequence as players in a cooperative

prediction game. The SHAP-value represents the marginal contribution of a feature with and

without the feature in every possible combination of other features. The contribution of a feature

is the average over all possible subsets of other features.

SHAP-value for a given feature i is calculated as follows:

ϕi =
∑

S⊂N\{i}

|S |!(|N| − |S | − 1)!
|N |!

[ f (S ∪ {i}) − f (S )] (2.1)

, where N is the set of all features, S is a subset of features excluding i, f (S ) is the is the model

prediction using the features in subset S and the term |S |!(|N|−|S |−1)!
|N|! is a weighting factor that

accounts for the number of subsets.

Computing the SHAP-values for every feature is computational very expensive, because the

outcome of every subset over every feature has to be computed, which grows exponentially with

the amount of features (Volkov and Averkin [2024], Zhao et al. [2024]).

Because LLMs can be very resource intensive and work on token-level prediction, calculating

the SHAP-value is not sufficient (Volkov and Averkin [2024], Zhao et al. [2024]). TransSHAP
(Kokalj et al. [2021]) is adapting SHAP to the transformer architecture, making it a viable

tool. TransSHAP is grouping tokens on higher hierarchical levels based on their importance

or similarity. This reduces the need to compute the SHAP-value for every token separately.

TransSHAP also leverages the attention mechanism and reduces the amount of subsets created

in the process, by sampling only subsets of features that are more relevant according to the

attention weights. TransSHAP is generating all possible subsets of features, by masking tokens

with the BERT (Devlin et al. [2019]) mask token ([MASK]), which is more consistent with the

transformer’s inner workings, making the process more efficient in computation. Compared to
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the traditional SHAP-value (Lundberg and Lee [2017]), the TransSHAP-value is less accurate

and more probabilistic, but more efficient to calculate (Kokalj et al. [2021]).

2.4.3 PCA on Representation Probing

Another common approach to analyze the semantic knowledge embedded in the internal vector

representations of an LLM is by probing the model on a specific downstream task and analyze the

internal vector representation with some form of dimension reduction (Jawahar et al. [2019], Co-

enen et al. [2019], Singh et al. [2024]). Principal component analysis (PCA) (Pearson [1901],

Hotelling [1933]) is a linear dimensionality reduction technique that seeks to find hyperplanes in

lower dimensions, which capture the most variance of the original data. Mathematically, this is

done by finding the eigenvector of the covariance matrix with the highest (second-highest, ...)

eigenvalue.

Figure 2.9: Illustration of principal component Analysis from 3 dimensions (left) to the 2 first
principal components (right).

Figure 2.9 shows the first two principal components (red and green), that capture the highest

variance of the original data points.

This technique can be used to reduce the high-dimensional hidden states of BERT in order to

analyze them (Coenen et al. [2019]).

2.5 Open Source Python Libraries

Python (Van Rossum and Drake [2009]) is a programming language that provides a large

ecosystem and community when it comes to AI development and machine learning. Python

supports an official package index with third-party python software like Pytorch (Paszke et al.

19



2 Related Work

[2019]), Numpy (Harris et al. [2020]), Hugging Face transformers (Wolf et al. [2020]), Hugging

Face datasets (Lhoest et al. [2021]) and Pytorch Geometrics (Fey and Lenssen [2019]).

2.5.1 PyTorch

PyTorch is: "a Python library that performs immediate execution of dynamic tensor computations

with automatic differentiation and GPU acceleration, and does so while maintaining performance

comparable to the fastest current libraries for deep learning." (Paszke et al. [2019]). PyTorch

automatically catches differentiable gradients when performing operations on tensors, which

allow convenient back-propagation when training models.

The class torch.nn.Module is the base class for all neural network and other parameterized

modules in PyTorch. It provides methods for defining layers and operations, managing model

parameters, and handling forward and backward passes. Every subclass of the nn.Module has

to implement the two key methods __init__(): The models layers and other components and

forward(): the forward pass for the data through the model.

The class torch.nn.Linear inherits from torch.nn.Module and applies a linear transformation on

incoming tensors using y = xWT + b, where x is the input tensor of shape Hin, y is the output

tensor of shape Hout, W is the trainable weight matrix of shape (Hout,Hin) and b is the trainable

bias of shape Hout. This shapes are set fixed during initialization process.

The class torch.nn.Embedding also inherits from torch.nn.Module and is a trainable lookup

table that stores embeddings of fixed dictionary size. Given a list of indices, the module returns

an embedding of shape Hembed for each index in the list, where each embedding is trainable. The

module is initialized with the dictionary size and the embedding shape.

2.5.2 Numpy

Numpy (Harris et al. [2020]) is an open source python library for high performance matrix and

high dimensional array manipulation on CPU. Numpy plays an essential role in many research

analysis pipelines and give the foundation for other scientific open source Python libraries.

Each Numpy array comes with metadata, like shape or type. Torch and Numpy tensors are

interchangeable on CPU.
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2.5.3 Pandas

Pandas (Mc Kinney [2010]) is a python library that handles in-memory tabular data sets and

provides basic statistical tools. Pandas implements the DataFrame class, that helps to integrate

structured Numpy arrays with the rest if Numpy. Multiple functionalities are integrated, such as

loading and saving DataFrames from csv, filtering, grouping, joining multiple DataFrames or

adding rows or columns to existing ones.

2.5.4 Hugging Face Stack

Hugging Face, Inc. is an US-American Software Company that provides tools for developing

machine learning applications, mostly transformers. Hugging Face provides a publicly accessible

model and dataset hub and the open source transformers and datasets python libraries under

the Apache 2.0 licence.

Figure 2.10: A condensed UML class diagram view on the Hugging Face stack of transformers
and datasets as in Transformers: State-of-the-Art Natural Language Processing,
by Wolf et al., 2020 and Datasets: A Community Library for Natural Language
Processing, by Lhoest et al., 2021
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Figure 2.10 shows a condensed UML class diagram overview over the Hugging Face transformers

and datasets stack4. If there is a preamble before the class name, that preamble indicates the

python library and package of the class (for example datasets.Dataset). No preamble indicates

this class belongs to the Hugging Face Transformers library (for example BertModel). The

PyTorch logo is added to all PyTorch libraries for clarification (for example torch.nn Module).

(a) The overall Training process. (b) The detailed training process inside each batch.

Figure 2.11: The Hugging Face BERT transformer training process as UML sequence diagram:
overall and in detail, as in Transformers: State-of-the-Art Natural Language Pro-
cessing, by Wolf et al., 2020.

Figure 2.11 illustrates a typical training pipeline using the Hugging Face transformers library

(Wolf et al. [2020]). Figure 2.11a illustrates the preprocessing steps in more detail, while figure

2.11b illustrates the training process of each batch in more detail. In the following we describe

all classes from figure 2.10 and then describe their interaction during training as shown in figure

2.11.

Datasets (Lhoest et al. [2021]) is an open source, standardized interface library for NLP datasets.

Datasets are tabular, versioned and can be downloaded with little effort. They are computation-

and memory-efficient and allow working seamlessly with tokenization. A dataset is represented

by datasets.Dataset, which again is an arrow table. Datasets can be loaded from multiple sources,

including disk or Pandas DataFrames. Datasets can be aggregated by datasets.DatasetDict,

4Disclaimer: We are showing the classes only in partial and focus on the classes, methods and parameters that we
have used in this project.
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which maps given unique strings to datasets.Dataset objects.

Transformers library5 (Wolf et al. [2020]) is based on PyTorch and provides a standard NLP

machine learning model pipeline to process data, apply models and make predictions. A com-

plete Hugging Face model is defined by three building blocks: a tokenizer, that converts input

texts to numeric encodings (input ids) and back, a transformer, which transforms the numeric

encodings into contextual (internal) embeddings (hidden states) and a head, which uses the

contextual output embedding for the specific downstream tasks, like classification.

The base class of each model is PretrainedModel. PretrainedModel does inherit from

torch.nn.Module but does not implement a forward method. That means this class is not train-

able but it provides all inheriting classes methods to load and store trained parameters using

from_pretrained and save_pretrained.

Hugging Face implements the BERT models6 (Devlin et al. [2019]) and (Turc et al. [2019]).

BertPretrainedModel inherits from PretrainedModel and handles weight initialization and

provides a simple interface for loading pretrained BERT models. BertModel inherits from

BertPretrained and implements the actual BERT architecture, as described in (Devlin et al.

[2019]) and (Turc et al. [2019]). Each BertModel can be initialized with a BertConfig, which in-

herits from PretrainedConfig, can be loaded from a pretrained state and sets models parameters,

like the segments set(here type_vocab_size). The BertModel also holds reference to BertEm-
beddings, a class that provides three torch.nn.Embeddings for the initial encoding of tokens

(word_embeddings), positions (positions_embeddings) and segments (token_type_embeddings).

A forward pass with a list of indices (input ids, positions and segments) looks up the respective

embeddings and sums them for over each index as described in Devlin et al. [2019].

The other torch.nn.Module BertModel holds a reference to is BertEncoder, which implements

the actual forward pass into the multi-head attention blocks, as described in Devlin et al. [2019].

The outputs of BertEncoder can be interpreted by a wrapping class BertForSequenceClassifi-
cation, which passes the output embedding of the classification token (pooled output) of the

BertModel into a classification (linear) layer.

Hugging Face provides a feature-complete training and evaluation processing for Hugging Face

transformers and datasets with the Trainer class. A trainer holds reference to a training and

evaluation dataset. The referenced DataCollatorForLanguageModeling inherits from DataCol-
latorMixin and is responsible for batching incoming lists of datapoints. The trainer initializes

a DataLoader with the DataCollatorForLanguageModeling and the training and evaluation

5Latest implementation details: https://huggingface.co/docs/transformers/index
6https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py
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dataset. During the main training loop train() the trainer generates DataLoaders for training

and evaluation datasets using the DataCollatorForLanguageModeling. A DataLoader provides

an iterable over the batched datasets. With create_optimizer_and_schedular, the trainer also

initializes the optimizer with the parameters of the PretrainedModel.

Tokenizers are model specific and produce the numerical encodings of input texts with their

attention mask. Tokenizers can use padding and truncation during the transformation process

to even out the length of every encoding. Tokenizers can be adjusted during the transfor-

mation process to produce additional properties, like segments (token types ids). Tokenizer

lives independently of the entire training process. Each tokenizer inherits from PreTrained-
TokenizerBase, which again implements basic functions, like loading pretrained7 tokenizers.

PreTrainedTokenizer implements the main tokenize processing pipeline, that is shared across all

tokenizers, while BertTokenizer inherits from PreTrainedTokenizer and initializes the tokenizer

with the BERT (Devlin et al. [2019]) special tokens [CLS], [MASK], [SEP], [PAD] and [UNK].

BertTokenizer is build on top of WordPieceTokenizer (Wu et al. [2016]).

2.5.5 PyTorch Geometrics

PyTorch Geometrics (PyG) (Fey and Lenssen [2019]) is a geometric deep learning extension

for PyTorch. It leverages a simple message passing API for efficient GNN and GCN implemen-

tations like GraphSage (Hamilton et al. [2017]). SAGEConv is an operator that implements

a GraphSage layer (Hamilton et al. [2017]). HeteroData is a data object describing heteroge-

neous graphs. This data object behaves like a nested dictionary with basic torch functionalities.

The object can hold node-level or link level attributes. Datasets like HeteroData can be edge-

level split into training, evaluation and test with transforms.RandomLinkSplit. Negative edges

(node pairs without edge) can be added automatically as well by this transformation method.

LinkNeighborLoader is a class that allows sampling linked sub-graphs of large graphs, that are

not feasible to train with otherwise and also generate negative on the fly.

PyG Tutorials were published under the MIT licence on the PyG website8. The tutorial

for link prediction9 introduces the reader to GNNs with PyG.

7Hugging Face chose the term "pretrained" in this context, probably because the pretrained models were trained on
given tokenizer configuration and dictionary.

8Link to the Tutorials: https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html
9Link to the tutorial for link prediction:

https://colab.research.google.com/drive/1xpzn1Nvai1ygd_P5Yambc_oe4VBPK_ZT?usp=sharing
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(a) Class diagram of the link prediction
model and it’s GNN (GraphSage) com-
ponents

(b) Sequence diagram of the link prediction training pipeline

Figure 2.12: The PyG link prediction tutorial as in https://pytorch-geometric.readthedocs.io/en
/latest/get_started/colabs.html, by PyG Team © Copyright 2025, released under
MIT license

Figure 2.12 illustrates the PyG link prediction tutorial. The authors first load and preprocess the

MovieLens dataset (Harper and Konstan [2015]). For that they assign users and movies each

IDs in range. The genres of movies are also one-hot encoded. Ratings and tags were dismissed.

Then they define the GNN model as depicted in figure 2.12a. A SageConv implements Graph-

Sage layers (Hamilton et al. [2017]), which ultimately inherits from torch.nn.Module. The GNN
class also inherits from torch.nn.Module and holds two references of SageConv layers. The

Classifier also inherits from torch.nn.Module, but does not contain any trainable parameters.

Instead, it calculates the dot product between two given tensors. The Model class wraps GNN

and Classifier into a fully functional GraphSage model. For that, it uses two torch.nn.Embedding

modules for source and target initial embeddings, as well as a torch.nn.linear layer for the

one-hot encoded target features.

Figure 2.12b illustrates the training pipeline in a sequence diagram. After preprocessing the

dataset, RandomLinkSplit transform the dataset into three splits train, test, validation and adds

false edges to the test and validation split. For each batch in LinkNeigborhoodLoader a batch

of neighborhoods is fetched and false edges are generated for the test split on the fly. Then
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the source and target IDs are embedded via torch.nn.Embedding and the target features are

embedded via torch.nn.linear. The target ID and feature embeddings are them summed up.

This results in the source and target initial vector representations. The model receives a batch

of neighborhood initial vector representations and passes them into the first SageConv layer,

followed by ReLU followed by the second SageConv layer. This results in vector representations

(KGEs) of source and target nodes as discussed in GRL. These KGEs are then passed to the

classifier and the dot product is applied on them. The resulting scalar is then passed with the

ground truth, 0 for no edge in between source and target node and 1 for edge between source and

target node into a binary cross entropy with logits loss function that fits the models prediction

the the ground truth. During evaluation this process is replaced with a ROC AUC metric.

2.5.6 Scikit-Learn

Scikit-Learn (Pedregosa et al. [2011]) is based on Numpy and provides an easy-to-use interface

for many state-of-the-art machine learning implementations. Scikit implements PCA, multiple

metrics for model performances, like accuracy, f1 score or ROC AUC and can be used to

compute and visualize the confusion matrix.

2.5.7 Matplotlib

Matplotlib (Hunter [2007]) is a plotting library based on Numpy and MATLAB. Matplotlib

supports 2 and 3-dimensional plots, such as line or scatter plot.

2.5.8 NetworkX

NetworkX (Hagberg et al. [2008]) provides a flexible data structure for many graph types, such

as (un-)directed graphs with loops and complex node data types. Graphs in NetworkX can be

visualized by an interface to the Matplotlib library with simple node positioning.

2.6 Research Gaps

LLMs show great potential in numerous downstream tasks, like question answering, common-

sense reasoning, mathematic science and coding OpenAI [2023], Gemma Team and Google

DeepMind [2024], Llama Team and AI @ Meta [2024], DeepSeek-AI [2025]. Widely used

pretrained-transformer still show many disadvantages when dealing with graphs (Chen et al.

[2024b]). That is why there are multiple strategies to mix GNN architectures with transformer

architectures (Jin et al. [2024], Chen et al. [2024b]). While there are multiple strategies mixing
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GNN with transformer architecture suggested, the evaluation tends to be based purely on perfor-

mance (Mohammadkhani et al. [2023]), despite the increasing demands on XAI (Speith [2022],

Singh et al. [2024], Zhao et al. [2024], Volkov and Averkin [2024]). From our knowledge there

is only one scientific publication using XAI methods to understand the integration of GRL in

LLMs in detail (Li et al. [2024]).

In this thesis we are analyzing the semantics learned by a BERT encoder model (Turc et al.

[2019]) that is faced with KGEs produced by a GraphSage model (Hamilton et al. [2017]) and

introduced via soft prompts as in GraphPrompter (Liu et al. [2024b]) with XAI methods. The

insights we are producing help us understand what semantic features the BERT model learns to

interpret from the KGEs produced by the GraphSage model. We will also be able to check for

any unwanted behaviors like biases, that stem from the fusion of these different views, which

may stay unrecognized if the evaluation was purely based on performance.
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We are proposing a tool suite, that fuses multiple concepts and python libraries. There is a

technical standard we try to uphold, which stems from the availability of open source projects

and their embedding into well-established python libraries, such as PyTorch (Paszke et al. [2019])

in general, Hugging Face Transformers and Datasets (Wolf et al. [2020], Lhoest et al. [2021])

for NLP and PyG (Fey and Lenssen [2019]) for GRL. We hope, by providing source code,

that leverages said libraries, results into a higher accessibility. We also came to the conclusion,

that despite theoretical plans, the actual implementations may come with unwanted behaviors,

due to the complexity of said libraries and their tuning potential. We belief to make this tool

assessable to a broader audience, projects, such as this, need to be fire-tested in the actual

runtime environment. We made sure to include all python libraries that were used in this project

in the previous chapter. We also included detailed implementation details of classes and other

projects in case we adept or change them in this tool suite.

The goal of this tool suite is to provide a pipeline, that is producing KGEs with a GraphSage

(Hamilton et al. [2017]) PyG model, pass those KGEs to a BERTTiny128_2 model Devlin et al.

[2019], Turc et al. [2019] via soft-prompts such as in GraphPrompter (Liu et al. [2024b]) and then

use XAI methods to analyze the transformer’s behavior. We call our tool suite GraphPrompter
for Hugging Face (GraphPrompterHF). GraphPrompterHF has some conceptual changes

to the original GraphPrompter architecture tho. Figure 3.1 illustrates the GraphPrompterHF

changes compared to original GraphPrompter (Liu et al. [2024b]). Most changes stem from

our XAI methods, that we need to apply, in order to understand the transformer’s internal

semantic behavior. We mix several concepts of XAI methods in order to achieve comprehen-

sible results with high performance. The basis for all our analyses is classifier-based probing.

GraphPrompterHF will be trained on the GRL downstream-task link prediction, which allows

us to increase the need on processing graph related properties by the transformer. Because

we want to leverage XAI methods, such as SHAP (Lundberg and Lee [2017]), we base the

fine-tuning of GraphPrompterHF on multiple conceptual text segments, which later allows us to

use concept-based explanations as in Mohammadkhani et al. [2023] and Kokalj et al. [2021].
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Figure 3.1: GraphPrompterHF architecture on the task of link prediction adapted from Can
we Soft Prompt LLMs for Graph Learning Tasks?, by Lio et al., 2024 and BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding, by
Devlin et al., 2019

BERT (Devlin et al. [2019]) introduced segment embeddings (token_type_embeddings in Hug-

ging Face) to the transformer architecture, to help the transformer separate between the sentences

in NSP. We increase the number of segments from 2 to 6, so that we can leverage the segments

in XAI implementations and help the transformer distinguish between source and target node

features, KGEs and texts and special tokens, like [CLS] and [SEP].

For SHAP (Lundberg and Lee [2017]) we remove tokens from the input sequence by masking

them with the mask token [MASK], as already suggested by TransSHAP (Kokalj et al. [2021]).

We do not mask singular tokens but we group tokens by their segment (token_type_id), reducing

the complexity of candidates and increasing the interpretability similar to the approach of Kokalj

et al. [2021].

For the GNN, we made sure, that the output dimensionality of the GNN fit the input embedding

dimensionality of the transformer model, which allowed us to remove the projection layer

between GNN and transformer. The downstream-task was chosen in a way, so that the GNN

performs much better then the transformer. In this setup, we wanted to analyze if and how

the transformer is able to leverage the much stronger GNN performance by understanding

the features of KGEs. That is why we chose to keep the GNN frozen and instead trained the

transformer model during fine-tuning. We also added another 2 phases of fine-tuning, one before,

in which the transformer and GNN models are trained separately on the dataset and one after the

soft prompt fine-tuning, in which the entire GraphPrompterHF was trained end-to-end.

We based the GNN link prediction implementation on the PyG link prediction tutorial1 and

1https://pytorch-geometric.readthedocs.io/en/latest/get_started/colabs.html
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adjusted some of its hyper-parameters to our use-case and used the main (larger) version of the

MovieLens dataset (Harper and Konstan [2015]).

3.0.1 GraphPrompterHF

GraphPrompter (Liu et al. [2024b]) showed that leveraging soft prompts for KGEs in LLMs can

be a serious approach. While the approach shows promises, the actual implementation2 is more

of a proof of concept. The implementations performance can be enhanced by leveraging more

tools of PyTorch Tensor. For example, in the current implementation of the forward pass, every

word embedding in a batch is produced sequentially. One improvement could be to produce the

word embeddings for the entire batch in parallel. Because KGEs are no longer concatenated

at the beginning of the sequence, but at the end and because the sequences have difference

lengths, we are forced to use different mechanics how KGEs and LLM input embeddings are

concatenated. For that we can leverage the segments (token_type_ids) and padding tokens

([PAD]).

We construct the input sequence in a way, that the positions of the KGEs are first taken by

padding tokens. Then during the forward pass, we generate the actual KGEs with the GNN

and replace the padding tokens with the KGEs by using the segments as a mask. Given

the input features "User ID: 1, Movie ID: 30, Title: SomeTitle, Genres: [Fantasy, Drama,

Thriller]" results in the input prompt: "[CLS]1[SEP]30[SEP]SomeTitle[SEP][Fantasy, Drama,

Thriller][SEP][PAD][SEP][PAD][SEP]" and a segment sequence (token_type_ids) of:

[0,2,1,3,1,3,3,1,3,3,3,3,3,3,1,4,1,5,1].

~Ti =

1, if ~S = Si

0, otherwise
(3.1)

~Mi = ~Ti~1
ᵀ
dH

(3.2)

−−−−→
KGEi =

−−→
kgei~1

ᵀ
dS×dH

(3.3)

~W =

(
~W � (~1 − ~Ms) +

−−−−→
KGEs � ~Ms

)
� (~1 − ~Mt) +

−−−−→
KGEt � ~Mt (3.4)

Where

i ∈ [s, t] is an index for either source or target node vectors,

dH ∈ R>0 is the hidden size of the model (dH = 128 for BERTTiny128 (Turc et al. [2019])),

dS ∈ R>0 is the sequence length dimension of the model (dS = 512 for all BERT models (Turc

2Link to the original GraphPrompter implementation: https://github.com/franciscoliu/graphprompter
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et al. [2019])),
~S ∈ RdB×dS is the segment vector (token_type_ids) of the batch,
~Si ∈ R are the segments of source and target (here 4 and 5),
~1dH is the unit vector of dimension dH ,
~1dS×dH is the unit tensor of dimension dS × dH ,
−−→
kgei ∈ R

dB are the KGEs of source and target nodes over the entire batch,
~1 is the unit tensor of dimension (dB × dS × dH) and
~W ∈ RdB×dS×dH are the word embeddings.

We filter the segments (token_type_ids) for source and target KGE positions in equation 3.1.

Then we scale (by repeating) both segment mask ~T and KGEs over the batch
−−→
kge to dimension

(dB × dS × dH) in equations 3.2 and 3.3. Last equation 3.4 we use the segment masks and their

inverse to replace some word embedding positions with KGEs, exactly where the segments are

equally the segment id for source and target KGE positions.

This implementation is differentiable regarding backpropagation and can be implemented com-

pletely in PyTorch operations, like addition, multiplication and matching, as well as reshaping

with torch.tensor.unsqueeze and torch.tensor.repeat.

3.0.2 Group By Segments

Grouping token positions by (semantic) features such as with concept-based explanations (Zhao

et al. [2024]) for attention maps (Mohammadkhani et al. [2023]) and TransSHAP (Kokalj

et al. [2021]) allows us to reduce the complexity and memory requirements of XAI methods,

increase their performance and provide the reader with a (semantically) summarized insight. Our

approach to expand the different segments for this structured dataset does not only allow us to

insert KGEs in the input embeddings as in equation 3.4, it also allows us to group internal vector

representations (hidden_states) by token positions as well as replacing entire segment groups

(for SHAP (Lundberg and Lee [2017]) as already done with other mechanics in TransSHAP

(Kokalj et al. [2021]).

Internal Vector Representations (Hidden States) by Segments

Grouping hidden states by segments reduces its memory requirement. Instead of storing the

hidden states over all positions we store hidden states ones for each segment. Grouping hidden

states by segments allows us to make global explanations about vector representations of segment

groups. We group hidden states by segments by averaging over all hidden states with the same
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segment. For S EG = [1, 2, 3, 4, 5, 6] and every segment i ∈ S EG we calculate the segment

masks ~Ti and ~Mi as in equations 3.1 and 3.2.

~Hi =

∑
dS

(
~H � ( ~Mi~1

ᵀ
dL

)
)

∑
dS (~Ti~1

ᵀ
dL

)
(3.5)

~Hmean(b, i, l, h) = ~Hi(b, l, h) (3.6)

Then we calculate the average of each segment hidden state ~Hi ∈ R
dB×dH×dL of each attention

layer dL ∈ R>0 (dL = 3 for BERTTiny128_2 (Turc et al. [2019])) by summing all hidden states
~H ∈ RdB×dS×dH×dL over the sequence length dS masked by the segment masks ~Mi and divide

the sum element wise by the sum of the segment mask ~Ti over dimension dS of as shown in

equation 3.5. Simply speaking, we sum the hidden states of all positions in the segment and

divide them by the amount of positions in the segment resulting in one hidden state for each

segment for each data point in the batch for each attention layer.

Then we stack the resulting average hidden states over the first dimension as shown in equation

3.6, where b ∈ [0, dB), l ∈ [0, dL) and h ∈ [0, dH), resulting in a vector ~Hmean ∈ R
dB×|S EG|×dH×dL .

We use PCA (Pearson [1901], Hotelling [1933]) on any chosen layer l and segment i over the

entire batch of hidden states to reduce the hidden states to 2-dimensions with their 2 most

important components and plot them on scatter plots as illustrated in figure 2.9. We also

manipulate the color and markers of these points based on ground truth features, like data point’s

label or movie popularity (in degree of node).

Attention Maps by Segments

As Mohammadkhani et al. [2023] already suggested, grouping attention maps by concepts

for structured data, like source code increases its interpretability and allows to make global

statements based on local observations. The attention map in its original form is the attention

score, which is based on the dot product between key and query of the token positions. That

is why in every layer we are looking at d2
S attention scores. We will reduce the complexity to

|U(~S)|2, meaning we are looking for the key query pairs of segments instead of token positions.

~A =

∑
dAH
~AAH

dAH
(3.7)

~Asource
i =

∑
dsource

S

(
~A � ( ~Mi~1

ᵀ
dS×(dL−1))

)
∑

dsource
S

(~Ti~1
ᵀ
dS×(dL−1))

(3.8)
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~Asource
mean (b, i, s, l) = ~Asource

i (b, s, l) (3.9)

~Atarget
j =

∑
dtarget

S

(
~Asource

mean � ( ~M j~1
ᵀ
(dL−1)×|S EG|)

)
∑

dtarget
S

(~T j~1
ᵀ
(dL−1)×|S EG|)

(3.10)

~Amean(b, i, j, l) = ~Atarget
j (b, i, l) (3.11)

Computing the average attention masks over segments is very similar to the hidden states process,

but this time we are facing attention maps for every attention head
~AAH ∈ R

dB×dAH×dsource
S ×dtarget

S ×(dL−1), which we compute the average of at the beginning in equation

3.7 with dAH being the amount of attention heads in the transformer. With this, we compute ~A ∈
RdB×dsource

S ×dtarget
S ×(dL−1), where each attention score is the score between key-query token position

pairs and the the last layer is excluded, because there is no attention score for that layer. First we

compute the average of all positions in the same group i resulting in ~Asource
i ∈ RdB×dtarget

S ×(dL−1)

as seen in equation 3.8. Then we stack those vectors over dimension 1 resulting in ~Asource
mean ∈

RdB×|S EG|×dtarget
S ×(dL−1) as seen in equation 3.9. We repeat this procedure on the already averaged

attention map, over the same segments j ∈ S EG and the sequence length dtarget
S resulting in

attention scores from each segment i to each other segment j with ~Atarget
j ∈ RdB×|S EG|××(dL−1) as

seen in equation 3.10. Then in equation 3.11, we stack those vectors over dimension 2, resulting

in ~Amean ∈ R
dB×|S EG|×|S EG|×(dL−1).

The attention map is then plotted in a bipartite graph as suggested by Zhao et al. [2024] and Vig

[2019]. All attention scores are normalized and then scaled by some arbitrary static value to

make the lines more human readable.

Figure 3.2: Illustration of an attention map.
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Figure 3.2 illustrates the attention map of a sampled GraphPrompterHF forward pass. As we

can see, there are the 6 segments of any datapoint and we can see the two layer of multi-head

self-attention blocks that result in the output of the classifier token ([CLS]). As we can see,

sometimes segments are paying attention to themselves, but for the most part this is not necessary,

because of the residual layer (He et al. [2016]) around each attention-block. In other words, a

low attention score on a key-query pair where the key equals the query does not mean, that this

information is lost, making the attention map susceptible to misinterpretation.

SHAP Mask by Segment Group

For that, we replace the segment mask 3.1 with a segment group mask.

U(~S) = {S i|S i ∈ ~S} (3.12)

P(C) = {C|C ⊆ U(S )} (3.13)

~Ti =

1, if ~S ∈ P(C)

0, otherwise
(3.14)

Equation 3.1 is replaced with equations 3.12, 3.13 and 3.14. This time we calculate the set of all

possible unique segments in equation 3.12, then we calculate the set of all possible combinations

of segments in equation 3.13 and then calculate the mask of token positions in a specific segment

combination with equation 3.14. Equation 3.12 and 3.13 can be computed only ones before the

training, because in this structured dataset every possible segment is predetermined.

~I = ~I � (~1dB×dS −
~Ti) + (~I[MAS K] ∗ ~1dB×dS ) � ~Ti (3.15)

In equation 3.15, where ~I ∈ NdB×dS is the numerical representation of the input sequence (in-

put_ids) and ~I[MAS K] ∈ N is the input id of the mask token ([MASK]), we replace some of

the input ids with mask tokens and this way remove features with given segments (concepts)

from the prediction. Unlike inserting KGEs into input embeddings, we do not need to scale the

segment masks ~Ti, because we do not operate on embedding dimension dH .

We compute the SHAP-values (Lundberg and Lee [2017]) on the validation dataset split after

the training on unseen data to extract get the importance of all segments. With every segment-

grouped masked, we do not only compute the SHAP-Value, but also store the averaged attention
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maps and hidden states, so we can analyze the internal behavior given some segments are

masked.

3.0.3 Three Training Stages of GraphPrompterHF

We are analyzing three stages of the same transformer model. First, the Vanilla model which

consist of only BERTTiny128_2 (Turc et al. [2019]) and uses the natural language portion of

the dataset is trained on the task of link prediction. For that we reduce the amount of possible

segments (S EG) from 6 to 4, removing the segments concerned with KGEs. In parallel, we

train the GNN (GraphSage (Hamilton et al. [2017])) as already implemented in the PyG link

prediction tutorial. In the second stage, we are continue training Vanilla and GNN model

in their composition as frozen GraphPrompterHF model, where the GNN’s parameters are

kept frozen. On top of the frozen GraphPrompterHF model, we are training both, GNN and

transformer, end-to-end. Last, we analyze all model stages (Vanilla, GraphPrompterHF frozen

and GraphPrompterHF end-to-end) with XAI.

3.1 Architecture

The components in the tool suite are separated by concerns and enables clear interchangeability

of datasets and models. The clear boundaries between components also allow the production of

intermediate pipeline step artifacts. The pipeline can be stopped and repeated at any step.

3.1.1 Pipeline

The tool suite’s pipeline is as follows:

1. Loading and transforming dataset into standardized format.

2. train GraphSage (GNN) and Vanilla model

3. train GraphPrompterHF frozen

4. train GraphPrompterHF end-to-end

5. produce XAI artifacts

6. evaluate XAI artifacts

The first part of the pipeline is the loading and transformation of the dataset in standardized

format. Then the GNN model and Vanilla Model are trained. GraphPrompterHF frozen is
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then trained on GNN and Vanilla model. Then GraphPrompterHF end-to-end is trained on

GraphPrompterHF frozen. Last, the XAI artifacts are produced by the LLMs and evaluated.

Most of the components concerns can be directly derived from these pipeline steps. Thus, we

are further discussing each pipeline step individually, so that the inputs and outputs are better

defined.

Dataset Format

Every dataset needs to end up in a specific format. We are using Pandas DataFrames (Mc Kinney

[2010]) for handling the datasets ids and features. Each dataset has to contain source_id and

target_id, which are both consecutive integer ranges starting with zero. Each datapoint is therefor

described by the source_id node and target_id node. Every feature of these datapoints are also

separated into source-features and target-features. In addition, we separate features into features

for NLP and for structural graph processing. For either model, the column name of a feature

starts with the target model, llm_ or gnn_ , either source_feature_ or target_feature_ followed

the actual feature name. Let’s say we have a feature named "population", that is used in NLP and

concerns a source node, then we end up with the column name: llm_source_ f eature_population.

The structural (GNN) features can only take numerical values, in our case categorical one-hot-

encoding of genres.

source_id target_id [llm | gnn]_[source | target]_feature_<name>

0 10 <feature>

0 22 <feature>

1 3 <feature>

Table 3.1: Dataset standardized format

The resulting pandas DataFrames should look like in table 3.1. The third column represents all

possible combinations of LLM, GNN, source and target features. Ones this format is met, we

can generate the HeteroData object of PyG (Fey and Lenssen [2019]), split the dataset into train,

test and validation, add non existing edges (combination of source and target nodes that do not

share an edge between each other) to the splits test and validation.
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3.1.2 Components

Figure 3.3: Components in the pipeline

The pipeline and requirements outline roughly the components for this tool suite’s architecture.

We want to make the components interchangeable, have clear boundaries and intermediate

artifacts between pipeline steps as depicted in figure 3.3. First comes the Dataset Manager a

component that manages the datasets transformation into a normalized formats, and the storage

and retrieval of all dataset related artifacts. Next, the Graph Representation Generator that

is fully responsible for the GNN models and for providing an interface for generating KGEs.

The LLM Manager is responsible for the LLMs, like training them. Lastly the Explainability
Module is responsible for post processing and plotting all XAI artifacts generated by the LLM
Manager.
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Dataset Manager

The Dataset Manager manages the format and storage processes of the tool suite. Some of

these steps are dataset dependent. For example, how to load the original dataset, and its structure

is highly dataset dependent. That is why the DatasetManager implements one abstract class

with all processes, that are dataset independent and which work on the normalized format. This

abstract class expects three pandas DataFrames in a particular format.

The source- and target-DataFrames contain the consecutive source- or target-ids and features

of each node in the KGE, with the same signature as described in table 3.1. Then there is an

edge-DataFrame that contains all source- and target-id pairs.

Once these three DataFrames are generated, they can be passed to the constructor of the

abstract class, which implements all dataset independent functions. In this constructor, the three

DataFrames are merged to produce the DataFrame as in table 3.1. This merged DataFrame will

be the one used by the LLMs, while the source-, target- and edge DataFrame will be used by the

GNN dataset. These GNN datasets (HeteroData objects) are now generated and split.

Figure 3.4: DatasetManager class diagram
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The class diagram in figure 3.4 shows the abstract class DatasetManagerBase and an interface

DatasetManagerInterface. The interface defines what an implementing class of a specific

dataset has to implement. The constructor of each class has to accept at least a flag [TRUE/-

FALSE], for skipping the loading and pre-processing of the dataset, if the expected outputs can

already be found on the disk. If TRUE, the recomputation of every step is forced. If FALSE

(default), the recomputation is skipped, if this step was already performed before and then, all

datasets are loaded from disk.

The constructor of any implementing class also have to call the constructor of the abstract

class. Because this constructor expects the three pandas DataFrames: source_df, target_df and

edges_df as described before, the constructor of the implementing class is forced to pass them

in the expected format.

Attributes

DatasetManagerBase has multiple attributes, all representing the dataset from multiple views

and types. We have already discussed the attributes source_df, target_df, edge_df and llm_df.

The other HeteroData objects are the entire dataset for the GNN model: gnn_data and the three

splits of that dataset: gnn_train_data, gnn_test_data and gnn_val_data.

DatasetManagerBase Constructor

As discussed the constructor receives the three DataFrames and the flag, to force a recom-

pute. The private methods create_dirs, generate_hetero_dataset, split_hetero_dataset and

split_llm_dataset are called in the constructor and run the most preprocessing steps on the

dataset. For splitting the HeteroData, we are using the PyG RandomLinkSplit3, a disjunct

edge-level random split that add non-existing edges to the test and validation split.

File Structure

After the DatasetManager is generated, the file structure in the data-root is as depicted in figure

3.5. There is a folder for all GNN related data, like the HeteroData(-splits) and a folder for all

LLM related data, like the DataFrames and and the folders where all LLM training processes

and model checkpoints are saved. There can be also some files and folders, that an implementing

DatasetManager are loading, unwrapping for pre-processing purposes. The protected methods

load_dataset_from_disk and dataset_present rely on the given file structure to check and load

given dataset objects.

3URL to RandomLinkSplit:
https://pytorch-geometric.readthedocs.io/en/2.4.0/generated/torch_geometric.transforms.RandomLinkSplit.html
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Figure 3.5: File structure after Initialization

Hugging Face Datasets (Lhoest et al. [2021]) are produced by the two methods gener-

ate_vanilla_dataset and generate_graph_prompter_hf_dataset for the respective LLM model.

Each method receives a tokenize callback function of the LLM component. We explain this

function in detail later in the LLM manager component. The second parameter is the separation

token used by the models tokenizer. This separation token (default [SEP]) is inserted between

each id and feature during input prompt generation. And again, the last parameter is a flag,

whether the dataset generation is forced to be recomputed.

The methods generate_huggingface_dataset is used at the end of the pipeline, when all XAI

artifacts have been generated. The method receives a list of DataFrames with the XAI artifacts

a,d a list of prefixes. The DataFrames’ columns can be assigned to their source after merge

and a flag, if the the features and ids in clear format are to be included or not. Again, we are

explaining the XAI artifact DataFrames later in the LLM component.

The method flatten_and_rename is used multiple times by generate_huggingface_dataset to add

the prefixes to the respective columns and to flatten any arrays. For each array flattend, a shape

array is added with the original shape of the arrays, so they can be transformed back into their

original state. This is necessary, because Hugging Face does not allow nested arrays in their data

fields.

Pre- and post-processing steps of the evaluation outputs of the models get handled by

shard_dataset_randomly and fuse_xai_shards. The first method slices given Vanilla and Graph-
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PrompterHF datasets into the given shard size and saving the resulting datasets on disk. We use

this method so we do not have to evaluate the entire dataset.

The other method collects all evaluation datasets of the SHAP-value calculation (one dataset for

each model and segment group) and fuses them into a single dataset for each model and segment.

This step reduces the memory requirement of the evaluation datasets, which would not fit into

memory otherwise.

Graph Representation Generator

The component Graph Representation Generator is responsible for managing the GNN

models and producing KGEs. The class GraphRepresentationGenerator is responsible for

managing one GNN model. It provides an interface for initializing/loading a model, train it and

produce KGEs for one or multiple passed node ids. Each GraphRepresentationGenerator holds

one instance of LinkPredictionModel class. The LinkPredictionModel class is inheriting from

PyTorch’s nn.Module. The LinkPredictionModel composites one of each instance of the GNN
and Classifier classes. Both, GNN and Classifier classes inherit from PyTorch’s nn.Module

class as well.

Figure 3.6: Class diagram of GraphRepresentationGenerator component
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Figure 3.6 shows the class diagram of the component. The LinkPredictionModel, GNN and

Classifier are compositions inside the GraphRepresentationGenerator and cannot be accessed

from outside otherwise.

GNN class defines a GNN model with two SageConv layers conv1 and conv2 and a non-linear

ReLU activation function in between, as described in the PyG link prediction tutorial.

Classifier does not store any trainable parameters, but performs the dot product between

source and target edge level representations, as described in the PyG link prediction tutorial.

Model is a composition of a GNN and Classifier instance. The forward method first passes

all nodes of the given neighborhood HeteroData to the GNN and then pass the KGEs to to

classifier, as described in the PyG link prediction tutorial. We add a second forward method

(forward_without_classifier) to this model, which does the same as forward, with the exception,

that the KGEs are not passed to Classifier, but returned directly.

GraphRepresentationGenerator is a the class that provides an interface for other compo-

nents. The class is initialized with the entire HeteroData and the HeteroData of each split, a flag

that can force the class to not load the models weights from disk and the GNN’s layer size. The

output size needs to be the same as the LLM’s hidden state size, so KGEs can be passed directly

from one model to another.

The method train_model receives a split HeteroData, the number of epochs and batch size and

trains the GNN, as described in the PyG link prediction tutorial.

The private method __link_neighbor_sampling receives a HeteroData split and a list of source

and target ids to return a linked neighborhood HeteroData for each source- target pairs. These

neighborhoods can be used to produce KGEs for given source and target ids.

The method get_embeddings receives a split HeteroData and a list of source and target pairs and

returns KGEs for each of these source- target pairs, by producing linked neighborhoods with

__link_neighbor_sampling and passing the neighborhoods to the GNN forward_without_classifier.

The method returns a tuple of tensors, one for source and one for target KGEs. Because the

method __link_neighbor_sampling is non-deterministic, because the linked neighborhoods are

produced by randomly sampling, which may yield different results on every call.

The method save_model is used to save the GNN after being trained end-to-end with the LLM.
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LLMManager

The LLMManager component manages all LLM related classes, like the Vanilla and Graph-

PrompterHF models. The component is used for training the models, as well as producing

the XAI artifacts, that will be interpreted by ExplainabilityModule. Figure 3.7 illustrates the

component diagram of the LLMManager. The LLMManager mostly modifies classes from the

Hugging Face transformers library, like BERT, DataCollator and Trainer. Some classes in the

component are model independent, like the CustomTrainer and the base classes ClassifierBase

and DataCollatorBase. GraphPrompterHF and VanillaClassifier both inherit from ClassiferBase.

GraphPrompterHFDataCollator and VanillaEmbeddingDataCollator both inherit from the Data-

CollatorBase. These are the classes that need to be defined for each Training strategy in out case

Vanilla and GraphPrompter.

BertForSequenceClassification is a mixture of the Bert base model and a classification

header. BertModel produces insert embeddings with the BertEmbeddings class. This class uses

multiple trainable feed forward networks to produces word embeddings (token embeddings)

from input ids (token IDs), position embeddings from position ids (positions) and token type

embeddings (segment embeddings) from the token type ids (segments) and sums them together.

The transformation to GraphPrompter for Hugging Face (GraphPrompterHF) is done by inheri-

tance and by overwriting either forward and/or constructor method. GraphPrompterHFBertEm-

beddings method overwrites forward to accept KGEs and flags for masking the source and target

KGEs in addition to input ids, position ids, token type ids. If KGEs are passed, the method

replaces certain positions in word embeddings with KGEs, based on token type ids, as already

described in equation 3.4.

If the flags of masking source and/or target KGEs are passed, the KGE replacement will be

skipped, because the mask token has already been replaced before hand. GraphPrompterHf-

Model simply holds a reference to GraphPrompterHFEmbeddings instead of BertEmbeddings.

GraphPrompterHFBertForSequenceClassification holds a reference to GraphPrompterHFBert-

Model instead of BertModel, accordingly. It also overwrites the forward method, which accepts

KGEs, source ids and target ids in addition to input ids, attention mask and token type ids.

ClassifierBase in the center of figure 3.7 is an abstract class and defines what each classifier

in this tool suite has to implement. Each Classifier is initialized with three DataCollators, one

for each split. In addition the model parameters of a PyTorch nn.Module, like of the GNN can

be passed, so the trainer can add its parameter to the optimizer during training. The constructor

initializes multiple path parameters that refer to the file structure we discussed in figure 3.5. A
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Figure 3.7: Class diagram of LLMManager component. Classes of the original Hugging Face
transformers library as in Transformers: State-of-the-Art Natural Language Process-
ing, by Wolf et al., 2020, are labeled with the Hugging Face logo
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classifier can again be forced to not load a fine tuned model from disk, via the flag.

The protected method _get_trainer(str) receives a Hugging Face dataset, a, the amount of epochs

for training and batch size. The method returns a Trainer instance.

The method train_model_on_data receives a Hugging Face DatasetDict with all splits, the

amount of epochs and the batch size and initialized the training on given DatasetDict.

Each implementing class of ClassiferBase has to implement the method tokenize_function. This

method accepts a Dictionary of features, like prompt, source and target ids and labels and it

accepts a flag if the resulting Dict contains PyTorch Tensors or Python base types. The method

tokenizes every prompt to it’s input ids and attention mask. Because each prompt follows the

same structure, the method also generates the token type ids. Then the method returns a Dictio-

nary of input ids, attention mask, labels, token type ids and in the case of GraphPrompterHF the

source and target ids.

The most complex method is forward_dataset_and_save_output is the method that produces

all data used by the ExplainabilityModule. We call the outputs of this method XAI artifacts,

because they contain rich and memory efficient data about the models behavior, that can be

interpreted by explainability tools and algorithms.

The method receives a Hugging Face DatasetDict with the Dataset splits, a list of strings, with

the split names we want this method to produce XAI artifacts for, the batch size during inference,

the amount of batches that are forwarded, before intermediate steps of the XAI artifacts are

saved, a list of XAI artifact names, that are to be produced and saved (can be "attentions",

"hidden_states" and/or "logits"), an optional tuple of boundaries, that are used for horizontal

scaling on multiple machines and a flag if the computation of XAI artifacts can be skipped if

they were found on disk. Later we look more into detail of the XAI artifact process.

VanillaClassifier inherits from ClassifierBase, implements the tokenize_function method and

initializes the VanillaDataCollator and VanillaBertForSequenceClassification model correctly.

The constructor receives three DataFrames, one with all LLM related data, one with only source

ids and one with only target ids. These are passed to the DataCollators, so they can produce

non-existing source-target pairs for the training process. The constructor also receives a path

to the root directory, the model name in the Hugging Face Hub, the model max length, a ratio

of how many non existing edges are to be produced on the fly and the flag to disable loading

a fine tuned model from disk. The constructor initializes the tokenizer and two DataCollators.

One DataCollator is for training and has a false ratio between zero and one, while the other does

have a false ratio of minus one. This makes the DataCollators behave differently when it comes
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to generating non-existing source-target data points during training. The constructor then loads

configs for the BERT model. The configs type vocab size are increased, so the BertModel will

accepts four token type ids (segments). Then the VanillaBertForSequenceClassification instance

is loaded from disk or from the Hugging Face Hub of pre-trained BERT models.

The VanillaClassifier also implements the tokenize_function, as we discussed in the Classifier-

Base.

GraphPrompterHF inherits from ClassifierBase and also implements the tokenize_function.

This time the constructor initializes three DataCollators. Not only differ the DataCollators in

their false ratio, but also which HeteroData they are using for the KGE generation. We talk

about this more in detail when explaining the GraphPrompterHFDataCollator.

The constructor receives the entire KGManager instead of only the DataFrames, but essentially

only accesses them and other dataset formats from the KGManager. Two additional parameters

can be passed, namely a Vanilla model path, so the BERT model can be trained upon the

fine-tuned Vanilla model and GNN model parameters, which allows the Trainer to add these

parameters to the optimizer, which enables the end-to-end training of the Bert Model with the

GNN.

The implementation of tokenize_function only differs from the Vanilla model by the token types

expected in the prompt.

DataCollatorBase is an abstract class that inherits from the Hugging Face’s DataCollator-

ForLanguageModeling. DataCollatorBase holds reference to a float false_ratio, which tells the

DataCollator how many incoming datapoints are to be replaced with node-pairs, that do not

share an edge with each other. The DataCollator also holds references to all available source and

target node ids, all edges between those, as well as Pandas DataFrames with all the features of

those nodes. Lastly the class holds a reference to the device the LLMs are working on.

DataCollatorBase overwrites the private method __call__ from the DataCollatorForLanguage-

Modeling class. Instead of forwarding given data points directly to the protected method

_convert_features_into_batches, __call__ will replace a fixed amount of them with data points

that represent source and target nodes, that do not share an edge between each other. For that it

calls the protected method _generate_false_examples on a percentage of data points defined in

the false_ratio. If this ratio is -1, the DataCollator will skip the replacement process.

DataCollatorBase’s constructor accepts a Hugging Face tokenizer, the Pandas DataFrames from

the DatasetManager with the entire dataset, with the source nodes and with the target nodes, as

well as the device and the false_ratio. The DataFrame with the entire dataset is transformed
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into three lists of integer, each representing all source node ids, all target node ids and all edges

between these nodes. The DataCollator uses these lists to produce node-pairs that do not exist in

the graph and that are not part of the other splits.

Each implementing class of DataCollatorBase needs to implement the protected methods _gen-

erate_false_examples and _convert_features_into_batches.

VanillaDataCollator implements the abstract class DataCollatorBase and with that the said

protected methods.

The constructor of this class is the very same as of DataCollatorBase and only propagates it’s

parameters.

The method _generate_false_examples accepts an integer, indicating how many non-existing

node pairs are to be generated. For each node-pair generated, the method also generates the input

prompts, then tokenizes them and generates the _attention_mask and token_type_ids, as we al-

ready discussed in the tokenize_function. The resulting list of dictionaries are passed back, replac-

ing existing node-pair datapoints. The entire list is then passed to _convert_features_into_batches.

The protected method _convert_features_into_batches accepts a list of dictionaries in which we

expect to find input_id, attention_mask, labels and token_type_ids. Each of these features are

grouped together in PyTorch tensors. The method then returns a dictionary of Pytorch tensors.

GraphPrompterHFDataCollator is initialized in addition to the parameters of the Vanil-

laDataCollator with a string representing the split this DataCollator is responsible for. This

label is later passed to the forward method of GraphPrompterHF forward method, so when this

method generates KGEs, it does know, from which split (train, test or validation) the linked

neighborhood can be produced from.

The method _generate_false_examples returns in addition to the input ids, attention mask, labels

and token type ids also the source id and target id of the newly generated node-pair.

The method _convert_features_into_batches receives all said parameters and source- and target-

KGEs. These two parameters can be used during evaluation mode after training, if there is no

need to generate KGEs for every masked forward pass iteration individually.

CustomTrainer has two additional responsibilities during training. The first one is, that there

are two separate DataCollators, one for training and one for evaluation. Again, this allows the

evaluation process to use node neighborhoods from a separate pool. Both DataCollators are

passed during initialization. We also overwrite the get_eval_dataloader, so that this method

return the evaluation DataCollator if available.
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The other task of this Trainer is to add the GNN model parameters to the optimizer. If said

parameters are passed during the initialization process, the overwritten method

create_optimizer_and_scheduler will add the given parameters to the optimizer.

ExplainabilityModule

The ExplainabilityModule only consists of one class. This class is responsible for producing

plots of the XAI artifacts, like the accuracy during the training process, confusion maps, SHAP-

values (Lundberg and Lee [2017]), attention maps, PCA dimensionality reduced hidden states

and some other model features.

Figure 3.8: ExplainabilityModule component

Figure 3.8 shows the class diagram of the ExplainabilityModule. The class holds a reference

to the entire dataset and multiple paths to all XAI artifacts produced in previous steps. The

constructor of this class loads the dataset and initializes all paths.

The method plot_training_losses plots all training losses in a coherent manner during training of

the GNN, Vanilla, GraphPrompterHF frozen and GraphPrompterHF end-to-end models. Because

the training started with the Vanilla and GNN models, continued with GraphPrompterHF frozen

then with the end-to-end version, the losses and accuracy are placed on the diagram the same

way, resulting in a continues loss graph. A flag can be passed, if the plot is not to be saved on

disk.

Method plot_training_accuracies behaves the exact same way, with the difference, that the

accuracy during training is plotted.

Method plot_shap_values computes the SHAP-values (Lundberg and Lee [2017]) with equation

2.1 for all models and all segments.

Method plot_attention_map visualizes the attention scores of all models as discussed in section
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3.0.2.

Method plot_cls_embeddings takes the hidden states of the classifier token [CLS], reduces it’s

dimensions via PCA to two dimensions and visualizing the resulting vector representations of

given amount of samples on a scatter plot via Matplotlib (Hunter [2007]). In the resulting two

plots we color and mark all 2D points depending on their ground truth.

Method plot_kges takes the hidden states of user and movie KGEs in the initial layers of both

GraphPrompterHF models, computes the average cosine similarity (normalized dot-product)

between user and movie KGEs and prints them on the output stream. Then the hidden states

dimensions are reduced to 2D points and visualized on a scatter plot with one coloring and

marking setup.

Method plot_cls_movie_kges works different, because this method takes the hidden states of

XAI artifacts, that were produced for computing SHAP-values. The XAI artifacts in this method

are coming from the forward passes, in which only classification token and KGEs were not

masked. This method takes the hidden states of the classification token in the input layer and the

user and movie KGEs in the input and first layer of both GraphPrompterHF models, reduces

their dimensions via PCA and visualizes them on a scatter plot. This is done in three different

color and marker setups. Then this method also computes the average attention score for all

discrete values of movie connectivity between classifier token in the input layer and movie KGE

in the first layer and plots it as a Matplotlib line plot. Last, this method computes the average

difference between the cosine similarity of KGEs in the input layer compared to the first layer.

3.1.3 Process View

We have discussed the key concepts and static architecture of the tool suite. Now we are looking

at the multiple pipeline steps during run time. Each pipeline step is implemented in Jupyter

Notebooks (Loizides and Schmidt [2016]). We will look at each notebook and explain the

sequential interactions between the classes, we have described in the previous section.

Initialize Dataset and Train GNN

The notebook preprocess_dataset_train_gnn.ipynb loads the MovieLens dataset, transforms it

into the standardized format and then trains the GNN on its data.
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Figure 3.9: MovieLensManager initialization

Figure 3.9 shows the initialization process of the MovieLensManager. The constructor checks at

the beginning of each initialization process, if the dataset has already been initialized before. If

so, the MovieLensManager loads the dataset from disk. If not, than the constructor loads the

original dataset and transforms it. Every following step assumes, that the MovieLensManager

has already been initialized ones and we will refrain from showing this process in the following

diagrams.

(a) GraphRepresentationGenerator initialization (b) GNN training and evaluation

Figure 3.10: GraphRepresentationGenerator initialization and GNN training and evaluation
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Figure 3.10a shows the initialization process of the GraphRepresentationGenerator class. The

constructor loads the model for the GNN if one is saved at the expected relative path. The

initialization of MovieLensManager and GraphRepresentationGenerator follows the training

and evaluation of the GNN model, as depicted in figure 3.10b

Vanilla Dataset Generation and Model Training

(a) VanillaClassifier initialization (b) Vanilla dataset generation

Figure 3.11: Vanilla model initialization and Vanilla dataset generation

The notebook training_vanilla_model.ipynb initializes the Vanilla dataset and trains the Vanilla-

Classifier. Figure 3.11a shows the same concept of loading the LLM if available from disk, as

with the GraphRepresentationGenerator. The beginning of generate_vanilla_dataset shown

in figure 3.11b, works the same way, as with the other classes. If the dataset has already been

generated, the dataset can be loaded from disk. In case the dataset has not been loaded, we want

to load an intermediate dataset from disk, that has not yet been passed to the tokenizer. The

reason for that behavior is, that the method tokenize_function does behave differently, if the given

dataset was loaded from disk or was entirely loaded from memory. If latter, the tokenizer can

lead to memory overflows. If the intermediate dataset was also not found on disk, it is generated
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and then saved to disk. Right after the dataset generation, the training of the VanillaClassifier

begins.

Figure 3.12: Training Vanilla model

Figure 3.12 shows the training process of the Vanilla model. First the CustomTrainer gets

generated and the training process gets started. The trainer calls the DataCollator for every

step in every epoch and have that DataCollator generate batches of inputs for the model. The

DataCollator has two modes, in which it generates input batches for the model. If the Dat-

aCollator was initialized with a false_ratio between zero and one, then datapoints of node

pairs are generated, that do not share an edge and they replace some or all of the datapoints

in the current batch. Then each data point is formatted into PyTorch tensors with the method

convert_features_into_batches.

Then the data points are passed to the Bert model. During training, the loss is calculated and

propagated back, to train the model. During evaluation the accuracy in calculated instead.
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GraphPrompterHF Dataset Generation and Model Training

The generation of the GraphPrompterHF training dataset is done the same way as with the

Vanilla model, with the difference in how the prompts look like.

The training is also mostly the same, with a big difference in the way the classifier forwards the

input data. We will refer to figure 3.12 for the entire training process and go more into detail for

forward method call of GraphPrompterHFBertForSequenceClassification.

Figure 3.13: Training GraphPrompterHF model

Figure 3.13 shows the feed forward process of the GraphPrompterHF model. First Graph-

PrompterHFBertForSequenceClassification calls the callback function of the GraphRepresenta-

tionGenerator to produce KGEs. These KGEs, input ids and token type aids are then passed to

GraphPrompterHFBertEmbeddings. There the word embeddings are produced by forwarding

the input ids. Two of these embedding positions are then replaced with the source and target

KGEs. Then the input embeddings are produced by summing the word embeddings with the

token type embeddings and position embeddings. The resulting input embeddings are then

passed to GraphPrompterHFBertModel, where the input embeddings are passed through the

multi-head attention layers. The output embeddings of the classification token [CLS] are then

passed to the classification header for the actual prediction.
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Generate XAI Artifacts

The generation of the data points, that reflect the models behavior, like the generation of attention

maps, hidden states and logits for the SHAP-value calculation happens in the Jupyter Notebooks

forward_data_vanilla, forward_data_graph_prompter_hf and forward_data_graph_prompter.

Each notebook starts the forward_dataset_and_save_outputs with specific settings.

Figure 3.14: Generate XAI artifacts by forwarding masked data points

Figure 3.14 shows the process of generating XAI artifacts that is the same for each model. First

we sample a fixed amount of data points from the dataset, so we do not have to compute the

artifacts for all data points. Next, all combinations of token type id masks in the given dataset
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are generated. The dataset is then processed ones for each combination and split. In each batch

iteration, the attention mask is masked with the token type ids and the current combination

of token type masks. The Bert models then produce the XAI artifacts logits, attention maps

and hidden states. Hidden states and attention maps are then grouped by they token types.

Because the hidden states may result into memory overflows, they are saved from time to time

on disk, while all of the XAI artifacts are concatenated and saved on disk each dataset split and

combination.

3.1.4 Implementation Tests of Segment Equations

We have tested the correctness of implementations that could introduce unnoticed errors, like

the equations that use the segments (token type ids) for averaging or replacing. Replacing

the padding tokens with KGEs and segment groups with mask tokens was tested manually,

printing the output token type id for some forward passes and checking the correct structure. The

implementations of equations for grouping hidden states and attention scores by segments were

tested by implementing a less performance oriented but human readable form of the equation.

These tests were deemed to have been passed, if the outputs of the original implementation

and the slower readable implementation return the same outputs, whereby a rounding error was

permitted.
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Our goal is to find out, what internal semantic behavior our GraphPrompterHF architecture on

the task of link prediction on the MovieLens dataset (Harper and Konstan [2015]) shows up

using XAI methods. The experiment is divided into multiple stages, each producing outputs that

are necessary for following stages. In the first stage, we load the MovieLens dataset from its

source1, preprocess it for training and then train the models on the task of link prediction. Next,

we are producing XAI artifacts with the trained models. Finally, we are evaluating the given

XAI artifacts with XAI methods.

4.1 Producing XAI Artifact

4.1.1 Dataset Preprocessing

The MovieLens dataset (Harper and Konstan [2015]) contains 32 million movie ratings with

87.585 movies and 200.948 users. The dataset is transformed into a HeteroData dataset. The

dataset’s source nodes represent the users, while the target nodes represent the movies. The

feature genres of the movie are also transformed into one hot encoding and part of the movie

nodes.

We split the dataset with a ratio of (80, 10, 10), so the training data contain eighty percent of the

entire dataset. The training data set is split again into two parts with the ratio of (70, 30), so that

70 percent of the training data will be used only for message passing, while the rest 30 percent

are used for the training.

Every dataset split is then doubled in size by adding false edges for every existing edges. For

the training split this is done on the fly, while for the datapoints for test and validation splits are

fixed.

With the HeteroData datasets we generate the DataFrames for the LLM training, in which the

user column only contains the user id and the movie columns contain the movie id, title as a

string and genres as a list of strings.

We manually test the NLP datasets for disjunct datapoints, so there can be no information leak.

1URL to the MovieLens dataset 32 million datapoints: https://files.grouplens.org/datasets/movielens/ml-32m.zip
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4.1.2 Model Training

The models are trained on the datasets provided in the previous stage. First the GNN and Vanilla

model are trained, then the GraphPrompterHF frozen model and last the GraphPrompterHF

end-to-end model.

We train the GNN model for twenty epochs with a twenty neighborhood size on the first hop

and ten neighborhood size on the second hop with a false-edge ratio of (50, 50).

The dataset splits are transformed into Hugging Face datasets with the columns prompt and

labels. A prompt has the structure of user_id[S EP]movie_id[S EP]title[S EP]genres. Each dat-

apoint is passed to the BERT tokenizer, which adds the classifier token ([CLS ]) at the beginning

and an additional separator token ([SEP]) at the end of the prompt. The tokenizer calculates the

attention mask based on the sequence length and token type ids based on the separator token

ids and adds them to the output. This results in a dataset that has the columns input_ids, labels,

attention mask and token_type_ids.

The Vanilla model is initialized on the BERTTiny128_2 version and trained for two episodes on

the train split, with a batch size of 256, warm up steps of 500 and weight decay of 0.01. Each

epoch the training process is validated against the dataset test split.

The dataset splits are again transformed Hugging Face datasets with the columns prompt and

labels. This time, the prompt structure is

user_id[S EP]movie_id[S EP]title[S EP]genres[S EP][PAD][S EP][PAD]. The rest of the tok-

enization process is the same as with the Vanilla model.

The GraphPrompterHF frozen model is initialized on the Vanilla model but during initialization,

we do not pass the GNN model parameters, so that GNN stays frozen during training. The model

is trained on the same hyper parameters as before.

The training process on the end-to-end version of GraphPrompterHF uses the same dataset as

for the frozen version. But this time during initialization, we are also passing the GNN model

parameters to the GraphPrompterHF, so that all models can be trained end-to-end.

4.1.3 Forward Dataset to Models

We sample from the Vanilla and GraphPrompterHF datasets approximately 100000 datapoints

from the test and validation split and forward them to the models. For each combination of

segment groups, we collect the logits, hidden states and attention maps, reduce their precision to

four decimal points and store them on disk.

Then we are fusing the shards of hidden states together, so there is one Numpy array for each

model, dataset split, and segment group. The XAI artifacts are now ready for evaluation.
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4.2 XAI Evaluation

In this section we produce plots and extract quantized features of the XAI artifacts. Our

expectations are as followed:

The Vanilla model will perform worst, followed by GraphPrompterHF frozen, followed by

GraphPrompterHF end-to-end followed by the GNN alone. We expect this behavior, because

this task was chosen in a way, that favors structured based predicting, which the GNN is most

sophisticated in. The GraphPrompterHF models should follow, because they simply carry more

information into the prediction, then the Vanilla model. Frozen GraphPrompterHF should fall

behind end-to-end GraphPrompterHF, because the end-to-end model has more parameters to

remember the user-movie relations.

We are expecting to see some unusual behavior of GraphPrompterHF dealing with the KGEs

injected via soft prompts. Because these KGEs were generated in a way, that the similarity

between them indicates the likelihood of an edge between them, the transformer will have to

leverage that similarity between two KGEs for interpretation. Because similarity is only part of

the attention score process, we expect GraphPrompterHF to transform these scores into actual

vector representations.

We expect the process of adding false-edges to the dataset for data points, the way it was

conducted in this project, as the source of an unintentional bias. We expect the movies of

MovieLens dataset to be different in popularity (degree of incoming edges to the movie node).

If we add false-edge data points to the dataset uniformly, we are introducing a bias, that

overrepresents negative nodes of movies, that are not popular. This process should take the

movie and user popularity into consideration, so that the distribution of incoming and outcoming

edges of nodes stay the same.

(a) Example Graph of
user-movie relations.

(b) Expected reasoning
of Vanilla model

(c) Expected reasoning of
GraphPrompterHF mod-
els

Figure 4.1: Expected reasoning of models over example graph of users (mannequins) and movies
(film rolls) via learned clusters (bubbles and outlines).
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Figures 4.1 illustrate the expected reasoning behavior of the Vanilla and GraphPrompterHF

models. In figure 4.1a we illustrate a possible subgraph of the MovieLens dataset. In this

graph all users are connected to one or more movies. All movies are connected to one more

users. There are movies that are only connected to two users, while there are movies that are

connected to four or even five users. We expect the Vanilla model to leverage features of movies

for generalizing movies into groups and remember the connection between arbitrary user IDs

and movie groups as illustrated in figure 4.1b. For the GraphPrompterHF we expect them to also

generalize user groups and learn the connection between user and movie groups, which should

generalize better.

4.2.1 Model Performances

The first view we are looking at is the models performance during training.

(a) Training Losses of the Vanilla and Graph-
PrompterHF models

(b) Training Accuracies of all (GNN, Vanilla,
GraphPrompterHF) models

Figure 4.2: The performance of all models during training

In figure 4.2 we can see the performance evolution during training. The losses in 4.2a show a

steady and quick decrease in the Vanilla model training, in which it fluctuates around 0.2 till

the end. The loss of the frozen GraphPrompterHF model spikes at the beginning of training

and then decreases quickly, in which it fluctuates around 0.075. The loss of the end-to-end

GraphPrompterHF model increases at the beginning and stays around 0.9 until the end.

Figure 4.2b shows the accuracy development during training of the models. The GNN shows

an accuracy of 1.0, which stays so during the end-to-end training. The Vanilla model shows an

accuracy of 0.93 in the first epoch and an increase in the second epoch to 0.932. The accuracy

during the training of the frozen GraphPrompterHF model increases in the first epoch to 0.973,
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where it stays till the end. The accuracy of end-to-end GraphPrompterHF model decreases in

the first epoch to 0.97 and rises again to 0.971 in the second epoch.

The models performance in the figures 4.2 do not meet our expectations. First we have an

overfitting GNN model, that performs with an accuracy of 1.0. This overfitting should be

invested into, as it influences our interpretation of the models behaviors.

Another unexpected behavior comes in the order of GraphPrompterHF versions. We expected

the end-to-end model to perform better then the frozen version. But there is a slight decrease in

accuracy and a slight increase in loss the other way around. So far we can only make speculations

about this behavior. The overfitting of the GNN may have been the result of too many training

epochs. The accuracy drop may have been the result of the use of the PyG RandomLinkSplit

with disjoint_train_ration. This ratio reserves some nodes for message passing across all dataset

splits instead of training. This ratio was set to 70%, so more then half of the entire dataset’s

nodes were used only for message. During the translation from a HeteroDataset to a Hugging

Face dataset, we unintentionally ignored this behavior and assigned all datapoints for message

passing to the training split. The GraphPrompterHF versions had a greater amount of data

points to train on. With the greater amount and the overfitting, the models lost some of their

generalizability. Then during the end-to-end training, the overfitting of the new data points did

not influence the GNNs to the point where it dropped in accuracy, but it probably lost some

generalizability.

4.2.2 SHAP-values

Figure 4.3: SHAP-values of models grouped by token types

60



4 Experiments

Figure 4.3 shows the SHAP-values of each model for each token type (segment). The bars

are ordered from negative to positive influences for each model. The figure shows, that the

influence by the classification token is overall small, while the influence is highest in the Vanilla

model. The separation tokens also have a relatively low influence on all models, tho they show

a relative higher influence on the frozen GraphPrompterHF model. The user features show

moderate influences on the Vanilla and frozen GraphPrompterHF model, but low influence

on the end-to-end GraphPrompterHF model. The movie features show high influence on the

Vanilla and end-to-end GraphPrompterHF, but low influence on the frozen GraphPrompterHF

model. The influences of KGEs are only shown for the GraphPrompterHF models, because the

Vanilla model does not use these features. The user KGEs do show low influence on the frozen

GraphPrompterHF model, but moderate influence on the end-to-end version. The movie KGEs

show a very high influence on the frozen version and moderate influence on the end-to-end

model version.

It seems, that the models pay high attentions to the movies, because the user features do

not contribute much to the result, as the user ID is arbitrary and carries no semantic meaning.

That leaves the Vanilla model with two strategies. The first one is to remember each individual

user and its movie preferences and the second one is learning the overall most popular movie

features. The high influence of movie features in the Vanilla model could be the result of the

transformer learning popular movie features.

The frozen GraphPrompterHF pays the most attention by far to the movie KGEs and almost

no attention to the user KGEs, but relatively high attention to the user features. This behavior

shows that the movie KGEs holds crucial information for the given down stream task. The

moderate influence of the user features looks similar to that of the Vanilla model’s behavior.

This could mean, that the frozen GraphPrompterHF model continues the prediction strategy

of the Vanilla model but using the richer movie KGEs instead. A question arises, why the

frozen GraphPrompterHF does not also rely on the user KGEs. We can certainly say, that

the transformer did not pick up the similarity approach on user and movie KGEs. Else the

importance of user KGEs would be much higher. If the Vanilla model actually tried to learn the

preferences of each user individually, this could explain the frozen GraphPrompterHF’s behavior

for not switching to the user KGEs.

The end-to-end GraphPrompterHF model shows only very little attention to the user features, but

instead evens out the attention on both KGEs. We cannot tell if that means, what kind of strategy

GraphPrompterHF uses to process these KGEs. The model could try to compute the similarity
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between these vectors as a prediction strategy or it could extract and process the features of user

and movie in another way.

4.2.3 Attention Maps

(a) Vanilla model attention map (b) GraphPrompterHF frozen
model attention map

(c) GraphPrompterHF end-to-end
model attention map

Figure 4.4: Attention maps of the three training stages

The figures 4.4 show the attention maps of each model. Figure 4.4a shows the attention map of

the Vanilla model. The first layer shows no specific attentions. As we already pointed out that

the residual layers transfer most information into the first layer. From first to output layer the

model’s classification token shows a high attentions to the separator tokens, user features and

movie features. The user feature is payed the most attention to, followed by the separator tokens,

followed by the movie features.

As we expected, the user features are payed the most attention to, probably because the model

has to remember user preferences for each user individually, while movie feature embeddings

can be generalized over the genres and other indicators.

Figure 4.4b shows the attention map of the GraphPrompterHF frozen model. The figure

shows, that the movie KGEs pays a relatively high attention on all other features, specially to

the classification token, user KGEs and movie KGEs, while separator tokens, user and movie

features are payed less then half of the attention to. The user KGEs are paying attention on

the movie KGEs in the first layer. The classification token pays high attentions to all other

features in the output layer, the highest to the movie KGEs, followed by separator tokens and

user features, followed by the movie features and last by far by the user KGEs. The user KGEs

pays the highest attention to the classification token, followed by the user KGEs, followed by
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the movie features and last by the separator tokens.

The behavior of the frozen GraphPrompterHF fits the insights we extracted from the SHAP-

values. The classification token pays the most attention to the movie KGEs and the movie KGEs

summarizes all other features in the first layer. The unexpected behavior of the KGEs paying

high attention to the classification and separator token could be the result of the model having

to figure out how to interpret the KGEs. The similarity approach by the GNN may be only

interpretable by the transformer with some band-aid solution2.

Figure 4.4c shows the attention map of the end-to-end GraphPrompterHF model. The fig-

ure shows a similar structure compared to the frozen version. This time in the first layer, each

feature that was payed attention in the frozen model is now payed equally high attention by

the movie KGEs. The second layers attentions also shows relative higher attentions of features

that were already payed attentions to. The classification token pays higher attention to the user

features and the user KGEs pays overall higher attentions to the other features that were payed

attention before.

We already knew that the attention on the user features increases on this model, when looking at

the SHAP-values. Overall the model does seem to use all features more equally. This could be

the result of the model adjusting the GNN’s parameters from the transformer standpoint. We can

tell for sure, that the strategy of GraphPrompterHF end-to-end model does not change, but is

strengthened instead. This could mean, that the performance loss did not stem from the model

jumping out of the global minimum by following a different strategy of processing the KGEs.

This only supports the theory that the performance loss is the effect of an overwrite from the

previous data leak.

We marked the figures 4.4b and 4.4c with colored spheres for positions that we are most

interested in analyzing more. The green circles are placed at the classifier position at the output

layer. This position is most important to analyze, because it may show us the actual features

the models base their prediction on. The red spheres mark the positions that are interesting to

analyze that regard the influence of the classification token on the KGEs. As the classification

token is a static vector, it may be a band-aid workaround of the transformer to produce static

value dimensions in the embedding space, where the attention score can be mapped onto between

user and movie KGEs. The yellow spheres mark the positions of the KGEs in the input layer. We

are most interested in how much their quality changes before and after training them end-to-end.

We can check if there is a lower or higher cosine similarity between them depending on the

2Band-aid solution: a temporary solution, that does not fix the problem at it’s roots.
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ground-truth before and after the end-to-end training. This gives us a quantified answer to the

question, whether the similarity approach by the GNN changes during the end-to-end training.

4.2.4 Hidden States of Classification Tokens

(a) Hidden states of CLS tokens grouped by models
and ground truth

(b) Hidden states of CLS tokens grouped by popu-
larity (in degree of Movie)

Figure 4.5: Hidden states of CLS tokens

Figure 4.5 shows the hidden states of CLS tokens reduced with PCA through projection on

the plane spanned by the first 2 principal components on a scatter plot. Figure 4.5a shows the

classification token hidden states for the Vanilla model in purple, the GraphPrompterHF frozen

model in teal and the GraphPrompterHF end-to-end model in red, while the sign for hidden

states that have a ground truth of 1 (has an edge between user and movie) is a circle otherwise

cross. The figure shows that the hidden states ground truth separates roughly around the y-axis.

The hidden states show a negative correlation between the x and the y coordinates. The closer a

hidden state gets to the y-section (−8), the closer they get to the x-section (0). The cluster are

shaped overall in a parabola shape.

The color distribution is more random for the Vanilla model, followed by the GraphPrompterHF

end-to-end model and seems most clustered for the GraphPrompterHF frozen model. The hidden

states of Vanilla model are more "out of place" for some datapoints, especially in the center of

the plot.
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We can interpret the distribution of the classification tokens based on the model performances.

Because the Vanilla model performed worst in comparison, we already expected a less clear

separation of ground truths between the embeddings.

The parabola indicates that the original embeddings have a quadratic relationship between

some features in their high-dimensional vector space. This form could be the result of the

model separating between user-movie pairs that are hard to predict an edge for. We already

assume that the movie popularity may be an important indicator for the decision process of the

transformer, as some movies may be less connected and thus less represented for positive edges,

but overrepresented for negative edges. If our assumption is correct, then we should be able to

cluster the classification embeddings based on the degree of the movie nodes.

Figure 4.5b shows the hidden states of classification tokens grouped by the degree of edges

of the movie over the entire dataset. Classification tokens whose movie degree is in the lower

quantile are shown in blue. Classification tokens whose movie degree is in the middle quantile

are shown in green. Classification tokens whose movie degree is in the upper quantile are shown

in red. There is a clear color distribution visible. Movie embeddings in the lower quantile are

dominant and take over the entire left and center field. Movie embeddings in the middle quantile

are mostly positioned on the right, down to the y-axis section of −4, while the movie embeddings

in the upper quantile are densed up in the top, down to the y-axis section of around −2.

We can explain some of the behaviors from our previous setup and observations. The lower

representation of hidden states in the higher quantile on the left side of the plot can be explained

by the fact, how we generated those false edges. We used the PyG RandomLinkSplit (Fey and

Lenssen [2019]) to add negative train samples and this behavior does not take the original movie

distribution in consideration. This resulted in movies, that are not popular to be over represented

in user-movie pairs, that do not share an edge between each other.

Movies that are popular (in the middle or upper quantile) seem to be easier for the model to base

their prediction on. In other words, niche movies are harder to predict for the models, while

popular movies are not. The difference in distributions may have resulted in the transformer to

treat unpopular movies different compared to popular movies.

The initial expectation, that the y-axis is an indicator for the models’ uncertainty and the fact,

that there is a correlation between movie popularity and the uncertainty factor seem to go

hand-in-hand, because we can see a clear separation of colors from top to bottom, at least for

positives. We can argue, that the x-axis represents the prediction output and the y-axis represents

the confidence of the model. The movie popularity does not seem to be the only factor for this

behavior, tho, because of the clustering behavior of negative samples (left).
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Based on our observations we can already tell, that the models focus mostly on the movies

in their decision process and the more popular the movie is, the better they perform. We also

noticed the over representation of unpopular movies in the negative edge data points. We should

see a higher false-positive rate then false-negative rate for all models.

4.2.5 Confusion Map

We have already explained why we expect a higher false positive rate then a false negative rate.

To prove that expectation, we can compute the confusion map and with that the false positive,

false negative rates and their ratio.

(a) Confusion map Vanilla
model

(b) Confusion map Graph-
PrompterHF frozen
model

(c) Confusion map Graph-
PrompterHF end-to-end
model

Figure 4.6: Confusion maps

Figures 4.6 show the confusion maps of all models. Given the values of these confusion maps,

we compute the false positive and false negative rates.

Vanilla GraphPrompterHF Frozen GraphPrompterHF
False Positive Rate 0.095 0,044 0.047

False Negative Rate 0,040 0.009 0.009

Ratio 2,398 5,105 5.107

Table 4.1: False Positive and False Negative Rates in Comparison

Table 4.1 shows that the ratio between false positive rate and false negative rate is relatively high

(five times as large) for the GraphPrompterHF models. The ratio for the Vanilla model is less

then half.
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There are more false positives then false negatives, as we expected, because the datasets provide

more diverse movies for user-movie pairs that do not share an edge between each other. We can

also argue, that popular movies in the dataset, where nodes share an edge between each other

are over-represented and over-fit the models in that regard. One solution for that the training

process could be to remove over-represented movies and or genres and balance out the dataset,

so that the models have to generalize more.

4.2.6 Hidden States of KGEs

In section 4.2.2 we discussed the possibility that the GraphPrompterHF end-to-end version loses

some performance, because it was overfitting on the new data points, that were not present

during the GNN training. We can also assume, that the end-to-end training changes the semantic

behavior of the GNN’s outputs. It was trained to produce KGE with high similarity, if an edge

is between two nodes. this behavior may change during the end-to-end training. If that is the

case, we should see an average cosine similarity shift for user-movie nodes that share an edge

between each other from high to low and a shift for nodes that do not share an edge between

each other from low to high.

Figure 4.7: KGE hidden state distances
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Figure 4.7 shows the distribution of user and movie KGEs hidden states in the first layer of the

transformer in relation to each other. The plot shows the user and movie embeddings of the

GraphPrompterHF frozen model with edges in purple and the embeddings without edges in

yellow. The user and movie KGE hidden states of the end-ton-end version are colored in teal

with edges and in red without edges. The plot shows, that user KGE hidden states are distributed

close to each other to the left, while user KGE hidden states with edges are scattered a little

bit more then those without edges. The movie KGE hidden states are positioned to the right

and form more of a curve from top to bottom. The embeddings are less overlapping and more

separated between embeddings of user-movies pairs with and without edges. The frozen movie

KGE hidden states show a greater separation then the end-to-end versions. The average distance

between user and movie KGE hidden states of the frozen model are on average the largest. The

average distance between user and movie clusters of the frozen and end-to-end versions where

there is an edge between user and movie are small and seem close to each other.

The behavior of the models are as expected. We expected the frozen version’s hidden state to

have a high cosine similarity if there is an edge between each other and low cosine similarity

if there is no edge between each other. We also predicted that this behavior diminishes for the

end-to-end model. Tho we cannot say for sure if the similarity between the frozen hidden states

with edges is on average higher then the end-to-ends hidden states. The cleaner separation of the

movie KGE hidden states in the frozen version were already shown in previous experiments.

To ensure that the similarity between the KGE hidden states of the frozen GraphPrompterHF are

higher then the end-to-end GraphPrompterHF, we compute the average cosine similarity for all

combinations and we should see the expected results.

edge no edge
frozen 0.231 -0.333

end-to-end 0.028 -0.082

Table 4.2: Cosine similarity between user and movie KGE hidden states in the first layer of
frozen and end-to-end GraphPrompterHF models

Table 4.2 shows the cosine similarities between user and movie KGE hidden states in the first

layers of the GraphPrompterHF frozen and end-to-end models. The tables shows, that the

similarity is ten times larger for the frozen model compared to the end-to-end model for nodes

with edges between each other and almost five times smaller for frozen nodes without edges

compared to end-to-end nodes without edges.

68



4 Experiments

This observation indicates, that the models behave as expected and the end-to-end training

diminishes the GNN’s ability to produce KGEs with high and low similarity.

4.2.7 CLS Hidden State Influence on Movie KGE

In the last experiment we are going visualizing the influence of the classification token position

on the movie KGE hidden state in the first layer. In our previous experiments we noticed

a distinct output distributions for popular and unpopular movies. Popular movies tend to be

classified with higher accuracy, while unpopular movies seem to confuse the model in its decision

process.

The classification token hidden state is independent of the popularity of the movie. The only

way this static embedding could matter (as we know from the SHAP-values) is by adjusting

the attention on this static hidden state. If we see an attention difference between popular and

unpopular movie KGE hidden states on the classification hidden state, then we can assume, that

the models use different conceptual strategies for the prediction, one strategy that leverages the

GNN and one that leverages the learned relations in the Vanilla model.

(a) Average movie KGE hidden state attention on
classification hidden state

(b) Movie KGE hidden states shift by classification
hidden states

Figure 4.8: Movie KGE Hidden States Shift

Figure 4.8b shows the movie KGE hidden state shifts from layer zero to layer one by the

constants of the classification hidden states in layer zero. The classification token hidden state of

the frozen GraphPrompterHF model is marked as the purple "Y" on the left, while the hidden
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(a) Movie KGE hidden state shifts by classification
hidden states of frozen model grouped by ground
truth

(b) Movie KGE hidden state shifts by classification
hidden states of end-to-end model grouped by
ground truth

(c) Movie KGE hidden state shifts by classification
hidden states of frozen model grouped by popu-
larity

(d) Movie KGE hidden state shifts by classification
hidden states of end-to-end model grouped by
popularity

Figure 4.9: Movie KGE hidden state shifts
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state of the end-to-end version is colored green. The movie KGE hidden states of the frozen

model are marked as crosses, while the movie KGE hidden state of the end-to-end model are

marked as dots. The hidden states in the initial layer are colored purple, while the hidden states

in the first layer are colored teal for the frozen model. The hidden states in the initial layer are

colored green and in the first layer and teal for the end-to-end model. The movie KGE hidden

states all show a vertical distribution. The hidden states in the initial layers seem to be equally

distributed. The hidden states in the first layer seem to be less dense around the x-axis. The

horizontal lines shift to the right from the initial and to the second layer. Overall, the frozen

hidden states are shifted to the left compared to the hidden states of the end-to-end model.

The classification token hidden states are very close to each other in the frozen and end-to-end

phases. The frozen and end-to-end phases both seem to shift the movie KGE hidden states to the

right and dense them up around the x-dimension. For the frozen version, the movie KGE hidden

states seem to be also getting denser around the y-axis. For the end-to-end version, the movie

KGE hidden states rather shift to the top.

These results are not telling us much about the nature of the shift. We can only tell that the shift

looks similar for the frozen and end-to-end phases with the difference, that the frozen phase also

increases in density on the y-dimension, while the end-to-end phase shifts more into to the top.

If we separate the views of the phases and color the hidden states by their ground truth, we

should already see the difference in the shift. We expect that there will be an axis representing

the ground truth of the prediction. We should see a that this dimension has a great influence on

the shift.

Figure 4.9a shows the movie KGE hidden state shifts of the frozen GraphPrompterHF model

from layer zero to layer one by the constant classification hidden state in layer zero grouped by

ground truth. All movie KGE hidden states in the initial layer are represented by the dot while

movie KGE hidden states in the first layer are represented with the cross. The hidden states

who’s ground truth is "there is an edge" are colored purple, while the others are colored green.

The plot shows that the colors separate around the y-dimension at the height of the classification

token hidden state. The lower part and largest part of this separation is colored in purple, while

the upper part is colored in green. The overall distribution and shifts are similar to the distribution

in the previous view.

Figure 4.9b shows the same plot for the end-to-end phase of the model. The separation between

hidden states with and without edges looks overall similar. However, the separation is more of a

diagonal from bottom left to top right.
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We already expected one dimension to represent the ground truth of the model. In the movie

KGE hidden states of the initial and first layer this dimension was the y-axis. We also expected

a difference between the shift of the movie KGE embedding based on the popularity of the

movie. And because we know there is a causal relation between the ground truth and the

movie popularity due to the generation process of node pairs without edge in between them, we

expected to see a difference in the movie KGE hidden state shift based on the ground truth.

with edge without edge
frozen 0.85 1.24

end-to-end 0.49 0.98

Table 4.3: Average movie KGE hidden state shifts

Tho it cannot be seen easily, if we calculate the average shift distance between data points before

we reduced the dimension with PCA and grouped by ground truth as described in table 4.3, we

can see an average shift distance difference between nodes with edge and without edge of around

150% for the frozen phase and almost 200% for the end-to-end phase. If we group the hidden

states in the plots by their movie popularity, we should be able to increase this effect.

Figures 4.9c and 4.9d are equivalent plots of the movie KGE hidden state shifts grouped

by movie popularity. The symbols are similar. The colors are divided into olive for movies in

the lower popularity third, teal in the middle popularity third and purple in the upper popularity

third.

Both plots show that movies in the upper popularity are situated at the very bottom, followed by

movies in the middle third of the popularity. The movies with popularity in the lower third are

placed at the top, while the borders between those groups are diagonals from bottom left to top

right.

This grouping shows the effect of popularity on the shift much greater. There are great outliers

of distances between cluster of movie KGE hidden states for unpopular movies (purple). Again,

if we check the average attention on the hidden state based in relation to the popularity, we can

expect more convincing insights.

Figure 4.8a shows the relation between the popularity of a movie and its average attention on

the classification token hidden state. The figure shows two lines, while the blue line represents

the frozen phase and orange the end-to-end phase of the GraphPrompterHF model. Both lines

begin at a relative high average of around 1.3 for the frozen and 1.0 for the end-to-end phase.

Both immediately fall steep to an average of 0.7 for the frozen phase and 0.4 for the end-to-end

72



4 Experiments

phase, where they start oscillate heavily at popularity of around 100. The gap between datapoints

increases and steadily.

As we suspected before, the movie popularity played a very strong role in the attention on the

classification hidden state. Unpopular movies with popularity close to 1 do pay strong attention

to the classification hidden state. We could argue, that the classification hidden state represents

two possible strategies, that GraphPrompterHF can chose or mix in between. This behavior

again suggests that the model solves the downstream task differently for popular and unpopular

movies. We can also assume, that the same influence takes place to the user KGE embedding on

the second layer.

4.3 Results

In this chapter we have evaluated the models performance and inner workings with explainable

ai tools (XAI). In each section we have discussed certain effects of the models behavior from

multiple viewpoints, and worked our way from global to local explanations. Each view on

the way generated multiple following questions and with that views to produce and evaluate.

We started with the global view of model’s performance in its three stages vanilla, frozen and

end-to-end. The overall performance drop in the last phase made us beware of overfitting

effects, we should avoid placing too much interpretation into. The following attention maps and

SHAP-values gave us a clear indications for positions of interest, which we analyzed in detail

on the internal state representations (hidden states) of the transformer.

Overall three positions of interest were analyzed in detail, namely the the classification token

position in the last layer, the relationship of KGE hidden states in the input layer and the rela-

tionship of the classification token in the input layer and the movie KGE hidden states in the

input and first layer.

Our experiments in section 4.2.1 showed, that the LLM’s performance is improved by the

usage of a the GraphPrompter architecture (Liu et al. [2024b]). The experiment also showed us

the performance drop in the end-to-end phase. The performance drop drew our attention to an

overfitting problem, which we complicated by a faulty transformation from the HeteroDataset

(structural view of the data) into a Hugging Face dataset (NLP view of the data).

Section 4.2.2 showed the importance of the movie KGEs in the frozen phase and the alignment of

other all attention scores in the end-to-end phase. In section 4.2.3 we were able to extract certain

positions of interest. The first area that we became interested in were the output classification

tokens. This area is the bottle neck for the downstream classification task and should carry the
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most pressing features.

Our analysis of this areas’ hidden states in section 4.2.4 made us aware, that one of the greatest

factors in the transformer’s performance is the movie’s popularity. If, for example, a movie at

hand is more popular, then the internal state representation of the output classification token

is more reliable and spatially separated by its ground truth. If, on the other hand, a movie

is less popular, then the internal state representation tends to be spread more widely and less

clustered. We also recognized, that there is a great distribution difference between between

user-movie-pairs, when there is actually an edge between them and pairs, when there is no edge

in between them. This difference in distribution was created artificially during the generation of

node pairs for which no edge exists. While node pairs for which an edge exists favor popular

movies, movies in node pairs for which no edge exists are equally distributed.

In section 4.2.5 we expected the LLM to treat unpopular movies and with that node-pairs for

which no edge exists differently. The confusion maps showed, that the models perform better for

node-pairs for which no edge exists by a factor of two in the vanilla phase and five in the frozen

and end-to-end phase. This models are probably biased towards the prediction of "no edge" if

the movie is unpopular due the distribution differences. In other words, the model simply has to

remember the popular movies and can guess that all other movies are more likely not connected

with a user if the model cannot remember differently.

One other position of interest was analyzed in section 4.2.6. We analyzed how the KGE are

interpreted by the LLM. By definition, KGE in the frozen phase are meant to have a high

similarity between each other, if there is an edge between user and movie and low similarity, if

there is no edge between them. We expected GraphPrompterHF to pick up that strategy with

some band-aid mechanic, because it will have to somehow include the similarity attention score

between the KGEs as an additional dimension in the actual value vector.

Our experiments showed, that the average cosine similarity between KGEs who’s nodes share an

edge between each other shrinks in the end-to-end phase, as well as the distance for nodes that

do not share an edge between each other. This behavior indicates, that the end-to-end training

diminishes the GNN’s ability to produce KGE with higher and lower similarity.

The last experiment we conducted in section 4.2.7 was to analyze the influence of the static

classification token on the movie KGE hidden state in the first layer. We were able to find

indications, that the movie KGEs are treated differently, if the popularity of given movie is very

low. This behavior becomes lower and much less predictable ones the a certain threshold of

popularity was reached. We also had no reason to believe, that this behavior is different for the

user KGE.
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Figure 4.10: Strategies GraphPrompterHF follows depending on the movie popularity

Figure 4.10 illustrates the four strategies we belief GraphPrompterHF follows during a decision

process. The first strategy is also followed by the Vanilla model and includes remembering

specific user-movie group relationships, as we already expected in figure 4.1b. For movies of

lower popularity the transformer starts to include the movie KGEs, as they can be integrated

seemliness into the strategy of the Vanilla model. At the same time, the KGEs of user and

movies can be compared via the band-aid attention score similarity strategy. For the least popular

movies with high uncertainty, the model can chose to guess "no edge".
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This thesis aimed to explain the inner workings of transformers when confronted with KGEs.

Using an explicit downstream task like link prediction on a combination of GRL and NLP, we

explore the internal states and dynamics of the LLM and possible interpretations of these.

We were able to confirm the experiments of GraphPrompter (Liu et al. [2024b]), in which

transformers benefit from soft prompting KGEs. Our experiments made us realize that in this

particular setup, the models are overfitting and a bias for popular movies has developed. Fur-

thermore, this bias and the soft prompting approach resulted in unexpected behaviors in the

transformer. Especially the attention on the classification token by the KGE positions caught our

attention. Our experiments gave us reason to believe that the attention on static classification

tokens by the KGE positions is reflecting the transformers’ attempt to interpret KGEs that have

been generated under a semantically different pretext.

The GraphSage model (Hamilton et al. [2017]) we used in our experiments was trained to

produce KGEs, that have high cosine similarity, if there is an edge between two given nodes

and a low cosine similarity if there is no edge between them. The transformer on the other hand

faces a classification problem via softmax.

Our experiments also gave us reason to believe that there is a strong relationship between the

connectivity of a node and this attention effect. The attention on the static classification token

was largest for nodes that have close to zero connectivity. This effect fades very quickly, which

leads us to the assumption that it allows the transformer to interpret KGEs of nodes with low

connectivity different then those of higher connectivity.

Our experiments underline the overall need for XAI research in fusing NLP with other ontologies

and modalities. The bias of the LLM was most likely the effect of the dataset distribution, in

which nodes with low connectivity are evenly distributed for node-pairs that do not share an edge

with each other compared to node-pairs that do share an edge with each other. This effect is less

significant in traditional GRL, as the node pairs are never analyzed in isolation, but always in a

context of their neighborhood. Nodes with higher connectivity can most likely be found in the

neighborhood of nodes with lower connectivity. The resulting KGEs should therefore be strongly
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dependent on these node centers and assigned to specific clusters. However, since the LLM

only learns about this connectivity indirectly via the KGE, it can only learn this relationship by

memorizing it from separate data points. The LLM resolving this issue by leveraging a band-aid

strategy in which the similarity of KGEs can be interpreted directly in the attention mechanism

and other strategies, that the LLM switches in between.

The effects of overfitting could have been avoided by early-stoppage and a correct transformation

of the structural view to the NLP view. The effects of popular movie bias could have been

avoided with multiple strategies. We could have added some of the contextual neighborhood of

each node in the natural language prompt. We could have artificially generated node-pairs that

do not share an edge between each other with the same distribution as there are node-pairs that

do share an edge between each other. Or we could have permitted the over-representation of

popular nodes to begin with. Increasing the prompt size with natural language representation of

the neighborhoods could be a valid solution for the problem to some extend, but as the literature

already implies, the LLM will still struggle to generalize relations between nodes as we expect

them from the view of GRL. Most promising solutions would be the looking at the artificially

generated biases during false-edge generation. We could balance out the dataset to begin with,

so there are not overrepresented movies or we could align the amount of false-edges with the

amount of true-edges for each node.

The fusion of models from different disciplines and modalities leads to unexpected behav-

iors. For example, the uneven distribution has led to a bias in the LLM, which did not come into

play from the perspective of GRL. We can assume that other data sets, graph structures, methods,

models and architectures will also lead to other unexpected behaviors. We need to analyze

powerful multi-tasking language models with XAI to ensure and justify their proliferation.

Specifically, we can conclude that the use of Graph-RAG should be subject to tighter analysis,

especially when nodes are removed from their context and presented to language models out of

context. The transfer of the KGEs used for retrieval to the LLM could be made mandatory for

an interpretable and sustainable use of Graph-RAG. Fortunately, GRL and KGEs are often used

as a tool for Graph-RAG and would not increase the computational effort by a lot.
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