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Kurzzusammenfassung Citizen-Science-Plattformen sind heute ein zentraler Bestandteil
des Biodiversitätsmonitorings. Sie ermöglichen es Freiwilligen, Artenbeobachtungen mit
bislang unerreichter räumlicher und zeitlicher Abdeckung zu erfassen. Die Verlässlichkeit
dieser Daten hängt jedoch entscheidend von robusten Validierungsmechanismen ab. Da
die Datenmengen kontinuierlich steigen, stößt die manuelle Expertenüberprüfung - die
derzeit gängige Praxis - zunehmend an ihre Grenzen.
Diese Arbeit untersucht zwei automatisierte Ansätze zur Unterstützung der Datenvali-
dierung im Kontext der europäischen Ornitho-Plattform: (1) statistisch definierte Emer-
gent Filters und (2) unüberwachte Outlier Detection Models. Die Filter erweitern klas-
sische Plausibilitätsprüfungen um zeitliche, räumliche und habitatbezogene Dimensionen.
Die eingesetzten Machine-Learning-Modelle-erstmals in diesem Kontext angewendet-lernen
artspezifische Verteilungsmuster und erkennen Auffälligkeiten anhand ihrer Abweichung
von typischen Merkmalskombinationen.
Beide Ansätze wurden an einem kuratierten Benchmark-Datensatz mit künstlich manip-
ulierten Beobachtungen für 27 Arten evaluiert. Die quantitative Analyse zeigt, dass die
unüberwachten Modelle die Filter in Bezug auf die F1-Scores klar übertreffen, insbeson-
dere bei komplexeren Fehlertypen. Qualitatives Feedback von erfahrenen Ornithologen
bestätigt zudem die Anwendbarkeit, Verständlichkeit und Nützlichkeit des Gesamtsys-
tems. Die Ergebnisse zeigen außerdem artspezifische und merkmalsabhängige Unter-
schiede in der Detektionsleistung.
Diese Arbeit liefert sowohl eine fallbezogene Bewertung der Integration automatisierter
Validierung in den Ornitho-Workflow als auch allgemeine Hinweise für die Entwicklung
vertrauenswürdiger Entscheidungsunterstützungssysteme im Bereich der ökologischen
Datenvalidierung.
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Abstract Citizen science platforms have become a important part of modern biodi-
versity monitoring by enabling volunteers to submit species sightings at unprecedented
spatial and temporal scales. However, the reliability of such data critically depends on
robust validation mechanisms. Manual expert verification - currently the norm in most
platforms - is increasingly reaching its limits as data volumes continue to grow.
This thesis investigates two automated approaches to support the validation of bird
sighting data in the context of the European Ornitho platform: (1) statistically defined
Emergent Filters and (2) unsupervised Outlier Detection Models. The Emergent Filters
extend conventional ecological plausibility checks by incorporating temporal, spatial, and
habitat-related dimensions. The Machine Learning models-applied for the first time in
this context-learn species-specific distributions and identify implausible records based on
their deviation from expected feature patterns.
Both methods were evaluated on a curated benchmark dataset containing artificially
manipulated sightings for 27 species. Quantitative evaluation shows that unsupervised
models consistently outperform statistical filters in terms of F1-score, especially for com-
plex error types. Qualitative feedback from expert ornithologists confirms the practical
relevance, interpretability, and perceived usefulness of the combined system. The results
also highlight species-specific and feature-specific sensitivities that influence detection
performance.
This work provides both a case study for the integration of automated validation into
the Ornitho workflow and broader insights into designing trustworthy decision-support
systems for ecological data validation.
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1 Introduction

1.1 Background

In recent years, citizen science initiatives have emerged as an increasingly important
resource for large-scale ecological monitoring. By leveraging digital platforms and mo-
bile applications, volunteers across the globe contribute millions of species observations,
enabling datasets that far exceed the spatial and temporal resolution achievable by tradi-
tional field surveys. This development has notably transformed biodiversity monitoring,
particularly for taxa such as birds, where citizen-contributed sightings have become a
foundational component of national and international databases.

1.2 Problem Statement

Despite their broad utility, the quality and reliability of such datasets remain a central
concern. The accuracy of species identification, correct geolocation, and plausibility of
ecological context must be critically assessed before these data can be used in scientific
analysis or policy decisions. Most citizen science platforms currently rely on manual
expert review to ensure data quality (Baker et al. 2021). While this approach benefits
from domain-specific ecological knowledge, it is increasingly reaching its limits due to
the exponential growth in data volume. As highlighted by Baker et al. (2021), the scal-
ability of expert-based validation is limited, creating a pressing need for complementary
automated support mechanisms.
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1 Introduction

1.3 Research Gap

To address this challenge, automated validation methods offer a promising pathway for
reducing the burden on human reviewers and improving the efficiency and consistency of
quality assurance. However, only a minority of citizen science projects currently employ
automated validation techniques, and most rely on basic statistical rules rather than
data-driven or adaptive methods (Baker et al. 2021). The literature identifies two critical
gaps: first, a lack of sophisticated, scalable detection algorithms; and second, a limited
understanding of how domain experts perceive and interact with such automated tools
in practical validation workflows.

1.4 Objectives and Approach

This thesis aims to close these gaps through the design, implementation, and evaluation
of two complementary automated validation approaches in the context of the Ornitho
platform - a collaborative citizen science network used in Germany, Switzerland, and
other European countries. The focus lies on Outlier Detection in bird observation records,
with the objective of flagging implausible entries prior to expert review.

The first approach builds on species-specific ecological knowledge by applying statistical
Emergent Filters. These filters extend previous filtering strategies (e.g., those used in the
eBird platform) by incorporating multiple environmental and spatial features, such as
altitude, land cover, and seasonal timing, to detect deviations from expected ecological
patterns. The second approach leverages unsupervised Outlier Detection Models, a novel
addition to this domain, to identify records that deviate from typical sighting clusters in
a multidimensional feature space.

To comprehensively assess these approaches, both quantitative and qualitative evaluation
perspectives are employed. The quantitative analysis benchmarks performance across
species and error types using precision, recall, and F1-score metrics. The qualitative
component involves expert review of model predictions to assess ecological plausibility,
interpretability, and perceived utility.

2



1 Introduction

1.5 Research Questions

The thesis addresses the following research questions:

• RQ1 – Comparative Model Performance: To what extent do statistical
(Emergent Filter) models and Machine Learning models differ in their accuracy
for detecting user-generated errors, as measured by the F1-score? Motivation: Un-
derstanding the relative strengths of both approaches is essential for deciding which
method should be prioritized or combined in practical validation workflows.

• RQ2 – Error-type–specific Performance: How does the detection performance
of the investigated model approaches vary across the predefined error types (e.g.,
date errors, land-cover errors, altitude errors)? Motivation: Quantifying the de-
tectability of each error type for both approaches helps reveal which anomalies are
harder to detect and which methods are best suited for specific error types.

• RQ3 – Species- or Guild-specific Performance: To what degree does model
performance differ among avian species or ecological guilds? Motivation: Quanti-
fying detectability across species or guilds for both approaches reveals systematic
performance differences and may indicate the need for method-specific adaptations.

• RQ4 – Influence of Features: Which features contribute significantly to the
detection performance of the Machine Learning model? Motivation: Determining
the most relevant features helps prioritize ecological variables that offer the greatest
predictive value for future deployments.

• RQ5 – Practitioner Preferences: How do professional ornithologists evaluate
the usability and reliability of statistical Emergent Filters compared with Machine
Learning models for error detection? Motivation: Gaining expert feedback is crucial
to ensure that automated tools are trusted, accepted, and actually useful in real-
world review processes.

1.6 Contribution and Relevance

The results of this thesis are intended to serve two main purposes. First, they offer
a case-specific assessment of the applicability and performance of automated Anomaly
Detection in the Ornitho use case. Second, they contribute to the development of broader

3



1 Introduction

guidelines for integrating automated validation into citizen science workflows. These
findings aim to inform researchers and practitioners on how to design, implement, and
evaluate automated systems that are not only technically robust, but also trusted and
usable by domain experts.

1.7 Project Context

The Ornitho platform, developed and operated by organizations such as the Federation
of German Avifaunists (DDA) and the Swiss Ornithological Institute, has amassed over
90 million bird records in Germany and nearly 28 million in Switzerland. With over 330
million entries across 12 participating countries, it represents one of the most compre-
hensive repositories of avian observations in Europe. Given the accelerating data inflow,
expert-only validation strategies are increasingly strained, prompting an urgent need for
scalable support mechanisms.

This thesis has been conducted as a collaborative effort between the University of Applied
Sciences Hamburg (HAW), the DDA, and the Swiss Ornithological Institute. It combines
methodological expertise in data science with domain knowledge from professional or-
nithologists to develop, test, and evaluate practical solutions for real-world validation
challenges in large-scale ecological monitoring.

4



2 Background

2.1 Citizen Science

Citizen science refers to the engagement of the public in scientific research activities,
often by contributing data, observations, or analyses (Zhu & Newman 2024). The rise
of digital platforms such as ornitho.de, ornitho.ch, eBird, and Naturalist has greatly
expanded the scale and scope of citizen science initiatives in ecology and biodiversity
monitoring (Johnston et al. 2023). These platforms enable volunteers to record wildlife
observations via mobile or web-based interfaces, generating vast datasets that can address
questions related to species distributions, phenology, and population trends. Citizen sci-
ence efforts are also linked to help monitoring the sustainable development goals (SDGs)
(De Sherbinin et al. 2021).

Volunteers in ecological citizen science commonly collect presence-only data by report-
ing sightings without noting absences-a straightforward approach that is employed by
platforms like eBird and Ornitho. However, this data inherently contain errors due to
observer variability (Johnston et al. 2023, Rempel et al. 2019), species misidentifica-
tion, and spatial or temporal inaccuracies (Johnston et al. 2020, La Sorte & Somveille
2020). Collectively, these factors can significantly affect outcomes of ecological stud-
ies (Backstrom et al. 2025), requiring careful correction to avoid misleading inferences
(Di Febbraro et al. 2023). In contrast, presence–absence data, collected via structured
or semi-structured protocols, capture both detections and confirmed non-detections, en-
abling stronger statistical inference over time, although requiring rigorous survey design
to distinguish true absences from non-detections (Parris et al. 2023).

5



2 Background

2.2 Validation of Ecological Citizen Science Data

Reliable data are essential for monitoring ecological trends, informing conservation strate-
gies, and guiding environmental management. However, the open-access nature of citizen
science can lead to varying data quality. Therefore, ensuring the reliability of volunteer-
collected data gathered through citizen science is a significant challenge, especially when
these contributions by non-professionals are intended to support scientific research and
policy decisions.

Without robust verification procedures, mistakes - whether due to misidentification, re-
porting errors, or other issues - can accumulate and potentially compromise the outcomes
of analyses and decisions. Consequently, developing effective data validation methods is
essential .

2.2.1 Approaches to Data Validation

Citizen science projects vary widely in their strategies for validating submissions, and
many offer no explicit description of their verification processes (Baker et al. 2021,
Cavadino et al. 2024). In a comprehensive review, Baker et al. (2021) identified four
primary categories of validation approaches:

1. Expert-Based Review: In this method, trained experts or experienced scientists
manually evaluate data submissions. Experts bring domain-specific knowledge to
the task, allowing them to spot inconsistencies, errors, or outlier observations that
automated systems might miss. Although time-consuming, expert reviews remain
the gold standard for ensuring data reliability (Figuerola-Ferrando et al. 2024).

2. Community Consensus: This approach leverages the collective wisdom of the
citizen science community. Through mechanisms such as peer review, rating sys-
tems, or discussion forums, community members can collectively validate obser-
vations. Community consensus often helps to democratize the validation process
and can be particularly effective when a large number of participants are involved
(Bourgeois et al. 2024).

3. Automated Approaches: Automated methods use computer algorithms, includ-
ing Machine Learning techniques, to verify data submissions. These approaches are
especially valuable when dealing with large datasets, as they can rapidly process

6



2 Background

and flag potentially erroneous entries (Kessel et al. 2025). Despite their potential,
Baker et al. (2021) found that automated approaches are rarely implemented in
current projects, with documented use cases largely limited to projects with over
1,000 participants.

4. Hybrid Systems: Hybrid validation systems combine two or more of the above
methods. For example, a project might initially screen submissions using auto-
mated algorithms and then have experts review the flagged entries. By integrating
multiple validation layers, hybrid systems aim to balance scalability with the nu-
anced judgment that experts and community members provide.

Figure 2.1 illustrates the distribution of these verification strategies among the reviewed
citizen science projects. The figure clearly shows that, irrespective of the project’s size,
expert-based review is dominantly used, followed by community consensus. Automated
approaches are notably rare and are only integrated into larger projects. Specifically, in
256 investigated citizen science projects, only seven use cases incorporated an automated
approach (Baker et al. 2021).

Figure 2.1: Overview of data verification strategies in ecological citizen science, adapted
from Baker et al. (2021). Approaches range from manual expert review to
fully automated methods.

This current underutilization of automated methods is not indicative of their unimpor-
tance. With the exponential growth of citizen science data, the scalability of traditional

7



2 Background

expert-based validation becomes a significant bottleneck (Baker et al. 2021). Automated
approaches are likely to play an increasingly critical role by handling large volumes of
data quickly and efficiently.

Furthermore, the integration of automated systems within hybrid frameworks can offer
a balanced approach. For instance, initial automated screenings can filter out clearly
erroneous data, while expert reviews can focus on borderline cases that require deeper
analysis. This synergy promises to enhance the overall reliability and usability of citizen
science data.

2.2.2 Framework for verifying ecological citizen science data

Recognizing this challenge, Baker et al. (2021) propose a structured framework for ver-
ifying ecological citizen science data that aims to balance efficiency and accuracy (see
Figure 2.2). This framework is specifically designed to accommodate the increasing vol-
ume of data generated by citizen science initiatives while ensuring the reliability of the
recorded observations.

The framework is organized hierarchically, with records undergoing different levels of
verification based on the available information and the associated confidence in their
accuracy. It comprises three key stages:

The first stage emphasizes the necessity of comprehensive data collection. Observers
are encouraged to submit the maximum available evidence - such as photographs, au-
dio recordings, and contextual metadata - alongside essential attributes such as date,
location, and species identification. This approach enhances the verification process by
leveraging a broader range of information. However, there is an inherent trade-off: in-
creasing data requirements may discourage participation, as volunteers may be deterred
by overly complex submission procedures (Baker et al. 2021).

To further improve data quality, each observation can be enriched with additional derived
features. For example, species-specific characteristics can be considered: if a species is
difficult to identify, frequently misclassified, or rarely recorded, the likelihood of misiden-
tification increases. Similarly, sightings that occur outside the species’ expected ecological
context or are reported by an inexperienced observer with a history of errors may warrant
greater scrutiny.

8



2 Background

Following data collection and enrichment, records undergo a two-tiered verification pro-
cess. The initial step involves automated verification, where algorithms assess the plausi-
bility of records by integrating primary observation data with secondary metadata, such
as historical occurrence records, species distribution patterns, temporal trends, and the
observer’s prior accuracy. These automated methods facilitate the efficient processing of
large datasets and continuously refine verification criteria as new patterns and anomalies
emerge. In cases where algorithmic verification yields inconclusive results, a community-
based validation step is introduced, leveraging the collective expertise of a network of
experienced contributors.

If neither automated nor community-based verification provides a sufficient level of cer-
tainty, records are escalated to expert review. This stage is essential for validating
observations that deviate from established distributional, phenological, or ecological ex-
pectations, including rare, invasive, or otherwise anomalous sightings. Expert evaluation
not only serves as the final validation step but also informs improvements to preceding
verification stages by refining automated filters and community-based decision-making
criteria.

Overall, this hierarchical framework optimizes data integrity while reducing the burden
on expert reviewers, thereby establishing an efficient, scalable, and scientifically rigorous
approach to verifying citizen science data.

Figure 2.2: An idealized data verification pipeline for ecological citizen science, adapted
from Baker et al. (2021). Automated Anomaly Detection, community feed-
back, and expert validation are combined in a feedback loop.

9



2 Background

2.2.3 eBird’s Emergent Filters

A notable automated approach used in the large-scale project eBird is the Emergent
Filters method, initially introduced in Kelling et al. (2011) and later refined in Kelling
et al. (2019). Emergent Filters integrate historical occurrence patterns and observer
expertise to flag questionable records dynamically. This strategy balances two competing
goals: retaining genuinely rare (but valid) sightings and weeding out clearly implausible
submissions.

Conceptual Overview

Emergent Filters operate under the principle that historical patterns of species occur-
rence can inform the plausibility of new observations. If an incoming sighting deviates
substantially from what has historically been reported for a given location, date, and
species, it is flagged as potentially erroneous. Importantly, these thresholds for what
constitutes an “outlier” are not static; they emerge and evolve over time as more data
are validated, leading to progressively refined filter criteria.

Spatiotemporal Bin Definitions

A core step in implementing Emergent Filters involves partitioning the data space into
spatiotemporal bins. For each species s, the platform defines a set of geographic and
temporal “cells” (or bins):

Bs = {(g, t) | g ∈ G, t ∈ T},

where G is the set of relevant geographic regions (e.g., grid cells or administrative bound-
aries) and T is a set of time periods. For this, Kelling et al. (2011) apply day-of-year
intervals. Each bin corresponds to a species s observed in region g during time window
t.
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Historical Frequency and Thresholds

For each bin (g, t), a historical frequency or distribution of observations for species s is
computed:

Fs(g, t) =
Number of verified observations of species s in bin (g, t)

Total verified observations in bin (g, t)
.

To account for fluctuations in reporting effort, Kelling et al. (2011) additionally introduce
a rolling maximum frequency using a centered sliding 7-day window. For a given day t,
the sliding window spans the interval

i = [t− 3, t+ 3]

The highest observed frequency within that window is then assigned to day t, producing
a smoothed daily probability of occurrence.

If this estimated likelihood for a given day t falls below a defined plausibility threshold
(e.g., 5%), all corresponding sightings that are submitted on this day in the following
year are flagged as potentially implausible.

Observer Reliability Adjustment

Beyond historical patterns, Kelling et al. (2011) also incorporate a weighting or “observer
reliability score.” Each participant u can be assigned a trust metric based on factors such
as:

R(u) = β1 · Expert Level + β2 · Past Accuracy + · · ·

Lower R(u) values for observers who repeatedly submit implausible sightings trigger more
frequent flags, whereas highly reliable contributors can exceed typical thresholds with
fewer questions raised. In practice, Kelling et al. (2011) discuss incrementally updating
these reliability scores based on expert validation outcomes.

Workflow Integration

The final stage of Emergent Filters involves routing flagged observations to a review
queue, where domain experts or experienced volunteers determine whether to confirm or
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reject them. Confirmed outliers lead to model updates, refining µs(g, t) and σs(g, t) for
future submissions. Rejected sightings adjust the observer’s reliability score and further
tighten the thresholds. Overall, this iterative framework can handle large, continuous
data streams and dynamically adapt to changing patterns of species occurrence.

2.3 Unsupervised Machine Learning

Many automated verification methods rely on historical frequency analysis tailored to
species and location. Another significant class of techniques is Unsupervised Learning,
specifically Anomaly Detection1. Anomaly Detection is a branch of Machine Learning
and statistical analysis aimed at identifying data points that significantly deviate from
the majority of observations (Chandola et al. 2009). In ecological citizen science data,
an anomaly might represent a rare but valid sighting (e.g., a bird seen outside its typical
range) or an erroneous record (e.g., incorrect data entry or misidentification).

Unsupervised methods serve as flexible Anomaly Detectors that do not require labeled
data for training, making them particularly useful for ecological data where outliers
are seldom explicitly labeled. However, they may flag genuine but rare observations as
anomalies, necessitating expert review or additional contextual validation.

Below, an intuitive overview of seven key unsupervised Anomaly Detection models ap-
plicable for in ecological and similar contexts is provided:

2.3.1 DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) detects anoma-
lies by clustering densely packed data points (Ester et al. 1996). Points that fall in sparse
regions are flagged as outliers. DBSCAN uses two parameters: the radius (eps) that de-
fines a neighborhood around points, and the minimum number of points (MinPts) needed
to form a cluster. It is effective at finding clusters of arbitrary shapes and identifying
isolated points as anomalies but may struggle with varying density distributions across
the data.

1Also referred to as Outlier Detection or Novelty Detection in some literature.
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2.3.2 HDBSCAN

Hierarchical DBSCAN (HDBSCAN) states to improve on DBSCAN by building a hier-
archy of clusters and extracting stable clusters based on density (Campello et al. 2013).
Unlike DBSCAN, HDBSCAN adapts to variable density levels across the data. Impor-
tant parameters include minimum cluster size and minimum samples, which influence the
algorithm’s sensitivity to outliers. This adaptive capability makes HDBSCAN especially
suitable for ecological data, where density distributions can vary significantly.

2.3.3 Isolation Forest

Isolation Forest detects anomalies by randomly partitioning data into binary trees (Liu
et al. 2008). Anomalies are points that require fewer partitions to isolate, indicated by
shorter path lengths in these trees (Yepmo et al. 2024). Parameters include the number
of trees and subsample size, which affect computational efficiency and detection accuracy.
Isolation Forest is particularly effective for large datasets and handles high-dimensional
data robustly, making it a practical choice for ecological data.

2.3.4 Autoencoder

An autoencoder is a neural network designed for Unsupervised Learning, encoding data
into a lower-dimensional latent representation and reconstructing it back into its origi-
nal form. Anomalies are identified by measuring the reconstruction error-the difference
between the original data and its reconstruction. Higher reconstruction errors typi-
cally indicate potential anomalies. Autoencoders are particularly powerful for detecting
complex, high-dimensional anomalies but require careful selection of architecture and
parameters (Zhou & Paffenroth 2017).

2.3.5 Local Outlier Factor (LOF)

Local Outlier Factor (LOF) identifies anomalies by comparing the local density of points
with that of their neighbors (Zhou et al. 2024). LOF assigns higher anomaly scores to
points located in significantly less dense regions compared to their immediate neighbor-
hood. The primary parameter, the number of neighbors, greatly influences sensitivity to
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local anomalies. LOF is especially valuable in ecological datasets, where locally anoma-
lous observations may indicate important rare events or errors (Breunig et al. 2000).

2.3.6 k-Nearest-Neighbor (k-NN)

The k-Nearest Neighbor (k-NN) method identifies anomalies based on their distances
to the k closest neighbors (Nizan & Tal 2024). Data points with significantly greater
distances compared to typical data points are flagged as anomalies. The parameter k
determines how many neighbors are considered, directly influencing Anomaly Detection
sensitivity and specificity. While intuitive, the k-NN method may require computational
optimizations to handle large datasets efficiently (Ramaswamy et al. 2000).

2.3.7 iNNE

Isolation using Nearest Neighbor Ensemble (iNNE) is an efficient, nearest neighbor-based
method that isolates anomalies by constructing spherical boundaries around randomly
sampled points Bandaragoda et al. (2014). Anomalies are points that are isolated by
large hyperspheres. iNNE addresses key weaknesses of earlier isolation methods like
Isolation Forest, including sensitivity to local anomalies and anomalies that exist near
clusters of normal instances. With linear time complexity, iNNE is highly scalable and
effective in large or high-dimensional datasets typically encountered in ecological studies
(Bandaragoda et al. 2014).
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Citizen science has become a powerful tool for gathering large-scale biodiversity data,
yet these open participation initiatives inevitably grapple with data quality control. Ob-
servations can include errors in species identification, spatiotemporal misplacements, or
even fabricated submissions. Consequently, numerous verification strategies-ranging from
manual expert reviews to fully automated Anomaly Detection-have been implemented
to filter out erroneous records while retaining genuine rarities.

3.1 Current Solutions for Validation

This section provides an overview of existing approaches for verifying citizen science
data in ecological research, with a particular emphasis on automated validation methods.
Additionally, expert-based and community-driven verification strategies are examined to
provide a comprehensive perspective on data quality assurance.

Traditionally, expert validation has served as the primary mechanism for ensuring the ac-
curacy of citizen science data. In this approach, professional scientists manually assess the
correctness of submitted observations to uphold scientific strictness (Pocock et al. 2024).
While effective, this method presents significant challenges regarding scalability, as the
increasing volume of submitted data surpasses the capacity of available experts (Baker
et al. 2021). Furthermore, dependence on a limited number of specialists can lead to
bottlenecks, delaying data availability and impeding timely decision-making. These limi-
tations have driven the exploration of alternative or complementary verification strategies
that maintain data integrity while accommodating large-scale datasets.

One such alternative is community-based validation, in which participants evaluate each
other’s submissions following predefined guidelines or through peer consensus. A promi-
nent example is Naturalist, a platform that contributes to the dataset used in this study.
Naturalist employs a consensus-based identification system, classifying observations as
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“research-grade” once a sufficient number of users agree on the species identity (Campbell
et al. 2023). Although this approach alleviates the burden on experts, specialist oversight
remains necessary for resolving uncertain or contentious observations, thereby balancing
scalability with accuracy.

Recent advancements in citizen science verification have introduced automated method-
ologies. These approaches primarily function as pre-screening tools that identify poten-
tial misclassifications for expert review, thereby reducing manual validation efforts while
preserving data reliability. Automated verification systems filter probable errors and
facilitate real-time feedback loops, allowing contributors to refine system accuracy over
time (Baker et al. 2021).

Automated approaches are particularly well - established in the context of image - based
data. For example, Lotfian et al. (2019) present a Deep Learning model designed to clas-
sify images submitted by volunteers. However, for tabular datasets, automated validation
remains relatively uncommon (Baker et al. 2021).

Nonetheless, certain platforms, such as eBird and Project FeederWatch, incorporate au-
tomated checks into their validation pipelines:

• Project FeederWatch combines automated Anomaly Detection with community-
based review, delegating expert intervention to cases involving highly unusual re-
ports (Bonter & Cooper 2012).

• eBird employs Emergent Filters to compare reported sightings against historical
records and species distribution models, flagging anomalous records for further
scrutiny (Kelling et al. 2019). eBird incorporates observer expertise as a weighting
factor, assigning greater credibility to contributions from experienced users. The
algorithmic details of the eBird approach is explained in detail in Chapter 2.2.3.
Their approach is adopted in this thesis and motivated the exploration of more
sophisticated filters.

These approaches are relatively dated, being incorporated in 2011 and 2012, respectively.
However, they remain operationally relevant and align closely with the objectives of this
study, as they focus on ornithological observations.

These established approaches primarily rely on rule-based heuristics and basic statistical
filtering. Researchers therefore highlight a need for more sophisticated verification tools.
For instance, Lotfian et al. (2021) advocate for the integration of Species Distribution
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Models (SDMs) to gauge whether a reported sighting is ecologically plausible in a given
location. While such models have demonstrated utility in assessing validity, they have
yet to be systematically integrated into mainstream verification pipelines, leaving a gap
between theoretical potential and practical implementation (Lotfian et al. 2021). More-
over, Sheard et al. (2024) highlight the potential of artificial intelligence-based validation
systems for providing instantaneous feedback, underscoring the necessity for further in-
novation in automated Anomaly Detection.
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To address the research objectives set in Chapter 1, a multi-stage framework was de-
veloped to identify and investigate anomalous or outlier bird sightings. This framework
encompasses an end-to-end pipeline-from raw data acquisition and feature generation to
Emergent Filter design, Machine Learning design, and an interface for expert review.
The primary goal is to capture unusual sightings that may indicate data-entry errors,
biologically implausible records, or legitimate shifts in bird distribution patterns. The
chapter begins with a detailed requirement analysis, specifying both functional and non-
functional requisites. Subsequently, a modular software design is introduced, illustrating
how the system’s components are structured and how they interact. Finally, each mod-
ule is described comprehensively, covering aspects of data ingestion, feature engineering,
threshold tuning, model selection, and the Gradio-based reviewing interface employed to
gather expert annotations.

4.1 Requirement Analysis

The requirement analysis serves to delineate the key operational and technical constraints
necessary for building a robust Outlier Detection pipeline. In essence, it captures what
the framework must accomplish (functional requirements) and how it must perform (non-
functional requirements). These requirements ensure that the final implementation is
both effective in detecting bird sighting anomalies and efficient in handling a large volume
of geospatial data.

4.1.1 Functional Requirements

• Data ingestion and preparation: The system shall be capable of reading, merg-
ing, preprocessing and filtering bird sighting data from various sources. A taxo-
nomic filtering mechanism shall limit the dataset to target species of interest.
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• Feature generation: The framework shall produce enriched features (e.g., land
cover and altitude) for each sighting to provide contextual information essential for
Outlier Detection.

• Emergent Filter computation: Domain-inspired filters (e.g., date/location plau-
sibility, habitat plausibility, altitude plausibility) shall flag suspicious records based
on historical species-specific distributions.

• Machine Learning implementation: Multiple unsupervised ML models shall
be implemented and optimized to systematically identify anomalous data points.

• Reviewing interface: An interface shall present the datapoint with the Emergent
Filter and Machine Learning output to allow expert reviewers to label records as
“Outlier” or “Not Outlier.” If flagged as an outlier, reviewers shall be able to specify
one or more reasons (e.g., implausible date, unusual altitude, etc.).

• Result logging: Reviewer decisions, along with relevant metadata, shall be logged
for later evaluation of model performance.

4.1.2 Non-Functional Requirements

• Scalability and performance: The system shall handle thousands or even mil-
lions of sightings efficiently. Feature generation and model training processes shall
be optimized to avoid excessive run times.

• Modularity and maintainability: The software shall be architected in a manner
that separates core functionalities into distinct, reusable modules. This facilitates
easier testing, debugging, and future extensions.

• Data integrity: Procedures for handling missing, invalid, or out-of-bounds values
shall be strictly defined to maintain the reliability of outputs.

• Usability: The reviewer interface shall be straightforward enough to be operated
by ornithologists with minimal technical expertise.

• Reproducibility: All data preprocessing and Outlier Detection procedures shall
be clearly documented and version-controlled, supporting scientific validation and
further development.
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• Robustness: Mechanisms shall exist to detect and handle exceptions (e.g., un-
classified habitat data, out-of-DEM range for altitude) so that the system’s outputs
remain meaningful even under imperfect data conditions.

4.2 Software Design

Given the breadth of requirements, a carefully structured software architecture is essen-
tial. A modular approach enables different parts of the system-such as feature extraction,
Emergent Filtering, and Machine Learning to evolve independently while minimizing the
ripple effects of changes. This approach is particularly advantageous in notebook-based
development, where clear demarcations between data loading, processing steps, and re-
sult presentation can mitigate complexity.

A modular architecture was chosen, wherein each module encapsulates a specific func-
tionality or set of related tasks. Figure 4.1 illustrates the top-level design, showing how
data flows from the raw acquisition stage, through feature engineering and Emergent
Filters, to the Machine Learning models and final reviewer interface.
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Figure 4.1: High-level overview of the software architecture, illustrating how each com-
ponent is used.
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To address the requirements outlined above, the system is divided into the following key
components:

• Data Acquisition & Preparation

• Feature Generation

• Emergent Filter Design

• Machine Learning Design

• Gradio Interface

Each of these components is described in further detail below, providing insights into
their respective functionalities, inputs, outputs, and internal processes.

4.3 Component Descriptions

This section details the core modules that make up the implemented framework, from the
initial acquisition of bird sightings data to the final expert review of flagged anomalies.
Each module addresses a specific part of the Outlier Detection workflow, enabling a
structured, maintainable, and extensible system architecture.

4.3.1 Data Acquisition & Preparation

The data used in this thesis originates from systematic bird sighting records collected via
the platforms ornitho.ch and ornitho.de, operated respectively by the Swiss Ornitholog-
ical Institute (Schweizerische Vogelwarte) and the Dachverband Deutscher Avifaunisten
(DDA). These citizen science platforms collect large volumes of ornithological observa-
tions across Switzerland and Germany, providing extensive datasets for ecological and
temporal analyses.

The complete dataset is subdivided into two parts: a training dataset covering the
years 2018 to 2022, and an evaluation dataset corresponding to observations from
2023. The current chapter focuses exclusively on the training data, which serves as
the basis for model development and initial analysis. The evaluation dataset will be
introduced separately in Chapter 5.
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Data Source

Data were obtained from exports of ornitho.ch and ornitho.de. Each record corresponds
to a single sighting event and contains the essential elements required for spatio-temporal
modeling. Overall, the combined dataset initially comprised approximately 50 million
individual sighting records for 821 bird species, providing a high-resolution view
of bird distributions across Central Europe.

Before any processing, standardization procedures were performed to ensure consistency
across both data sources. These included:

• Verification and harmonization of coordinate systems (EPSG:4326, WGS84 lati-
tude/longitude).

• Standardization of date formats.

• Consistency checks to confirm that all required attributes (coordinates, species
identifiers, and timestamps) were uniformly available across records.

Data Features

Each record in the dataset contains the following attributes:

• Latitude and Longitude: Geographical coordinates of the sighting (EPSG:4326).

• Date: The date when the observation was made (standardized as YYYY-MM-DD).

• Atlas Code: A code indicating bird breeding or migratory status (collected but
not used in this project).

• Bird Sighting Count: The number of individuals observed (collected but not
used in this project).

• Altitude: Altitude (in meters above sea level) of the sighting location.
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Taxonomic Filtering

Given the extensive size and taxonomic breadth of the original dataset, which included
records for 821 unique bird species, a strategic filtering step was necessary to ensure
computational feasibility and to focus on ecologically significant species.

In collaboration with ornithologists from the Swiss Ornithological Institute and the DDA,
a subset of 27 bird species was selected. These species were identified as particularly
interesting for scientific investigation, based on criteria such as ecological relevance, pop-
ulation trends, and spatial dynamics.

Thus, the training dataset used in this thesis consists exclusively of records of these 27
species, observed between 2018 and 2022. Table 4.1 provides an overview of the number
of records per species within this filtered dataset.

Focusing the dataset on these 27 ornithologist-selected species ensures that the subse-
quent modeling steps remain both ecologically meaningful and computationally tractable.

4.3.2 Feature Generation

Augmenting the dataset with additional contextual attributes forms the foundation for
more accurate Outlier Detection. Two primary types of features, land cover and altitude,
were generated to reflect the environmental conditions at each sighting location. While
some features (like altitude) were partially present in the input data, more advanced
or fallback processes were implemented to handle missing or incorrect values. Weather
features were considered but eventually excluded due to the high computational effort
relative to the insights gained.

Land Cover

Land cover features capture the habitat types (e.g., forests, water bodies, agricultural
areas) surrounding a bird sighting. Three distinct approaches were employed to integrate
land cover information into the bird sightings data, each offering a different perspective
on the spatial relationship between bird locations and their surrounding environments.
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Species Name Number of Records
Rock Ptarmigan 5933
Western Capercaillie 5242
Greater Scaup 15091
Twite 7756
Water Pipit 107835
Whinchat 129799
Three-toed Woodpecker 5180
Common Sandpiper 149326
Icterine Warbler 58037
Griffon Vulture 8593
Great Crested Grebe 428589
Common Rosefinch 7818
Garganey 86313
Middle Spotted Woodpecker 100175
Western Orphean Warbler 8898
Reed Bunting 277469
Ruddy Shelduck 99974
European Stonechat 262291
Black Kite 239725
White-tailed Eagle 139710
Whooper Swan 83481
Eurasian Pygmy Owl 13886
Northern Wheatear 120127
White-throated Dipper 88346
Meadow Pipit 196863
Citril Finch 9988
Eurasian Scops Owl 3598
Total 2,660,043

Table 4.1: Number of sighting records for the 27 selected bird species in the training
dataset (2018-2022).

On-Coordinate Land Cover In this simplest approach, the exact coordinate of each
sighting is matched to a land cover polygon from the Corine Land Cover (CLC) dataset.
Formally, let

P = {Pk | k = 1, . . . , n}

be the set of land cover polygons (e.g., forest, water, etc.) that together form a tessellation
of the study area. For a sighting with coordinates (xi, yi), that match the polygon Pk ∈ P
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such that
(xi, yi) ∈ Pk.

If such a polygon exists, the sighting is assigned the category corresponding to Pk. If
(xi, yi) does not lie within any polygon in P, a default label unclassified is assigned.

Percentage of Each Land Cover within 1 km2 A more granular perspective com-
putes the exact share (in percentage) of each land cover category inside a 1 km2 buffer.
Multiple columns (e.g., forest_area_percent, urban_area_percent, etc.) are
added to the dataset, each reflecting the fraction of that cover type within the buffer.
While this yields a rich habitat profile, it is also more computationally demanding.

Most Common Land Cover within 1 km2 For this approach, each sighting is
associated with the most dominant CLC polygon type in a 1 km2 buffer. By analyzing the
proportion of each land cover provided by CLC within this buffer, the algorithm identifies
which category covers the largest area around the sighting. The most prevalent land cover
category is assigned as the “most common” habitat descriptor. This approach simplifies
multiple coverage percentages into a single, representative type, balancing granularity
and interpretability.

Altitude

Altitude is another key ecological factor influencing where bird species typically forage or
breed. Although many records already contained altitude information, additional steps
were taken to address coverage gaps and potential outliers:

• EU-DEM Integration: The European Digital Elevation Model (EU-DEM) was
locally processed, aligning each sighting coordinate with the corresponding raster
cell to retrieve a reliable elevation value.

• Imputation for Coastal Sightings: Undefined elevations, which only occurred
near coasts and marine areas were set to zero to correctly reflect these areas. This
ensures that the completeness of the dataset is maintained without discarding valu-
able datasets.
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4.3.3 Emergent Filter Design

Emergent Filters incorporate species-specific ecological knowledge directly into the Anomaly
Detection process, complementing the general-purpose Machine Learning models. By
constructing feature-specific lookup tables, Emergent Filters enable a biologically grounded
plausibility assessment for each sighting.

Preprocessing

Before generating the Emergent Filters, the raw sighting data underwent basic prepro-
cessing steps to ensure consistency and reliability:

• Column Filtering: Removal of irrelevant columns such as internal identifiers or
fields not needed for the filter design.

• Missing Value Check: All rows containing missing values (NaNs) were removed
to prevent propagation of errors during filter creation.

• Data Type Standardization: Relevant columns (e.g., species name, coordinates,
date, altitude) were checked and converted to uniform data types.

This preprocessing ensured that the input data for all Emergent Filters was clean, con-
sistent, and complete.

Implementation of Filters

Three types of Emergent Filters were developed, based on:

1. Date and location (grid cell and day-of-year),

2. Land cover types,

3. Altitude.

Each filter follows a two-stage process: training (construction of lookup tables) and
prediction (application of thresholds).
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Date / Location (Grid + Day-of-Year) Training Phase: For each species s, grid
cell g, and day of year d, the relative plausibility of an observation was estimated as:

frequency(s, g, d) =
count sightings of s on day d in grid g

total sightings in grid g on day d

To smooth out sampling noise, a two-step circular rolling smoothing was applied: First,
a 7-day centered maximum filter to account for temporal neighborhoods, then a 30-day
centered moving average to produce the final plausibility value:

plausibility(s, g, d) = mean (max (frequency(s, g, d− 3 : d+ 3)) over d− 15 : d+ 15)

where wrap-around at year boundaries is handled (i.e., days 362-365 are neighbors to
days 1-4).

Prediction Phase: Given a new sighting (s, g, d), the plausibility is looked up:

plausibilitynew = lookup(s, g, d)

If plausibilitynew < τdate/grid, the sighting is flagged as implausible. Here, τdate/grid

denotes the decision threshold (typically τdate/grid = 0.05).

Land Cover Filter Training Phase: For each species s, the mean share of each land
cover type ci was calculated:

mean_landcover(s, ci) =
1

Ns

Ns∑
j=1

ci,j

where Ns is the number of observations for species s and ci,j is the percentage of land
cover type i for sighting j.
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Prediction Phase: For a new sighting, the Euclidean distance between its observed
land cover vector cobs and the species’ mean land cover vector cmean is computed:

dlandcover =

√√√√ k∑
i=1

(cobs,i − cmean,i)2

If dlandcover > τlandcover, the sighting is flagged as anomalous. Here, τlandcover represents
the land cover deviation threshold.

Altitude Filter Training Phase: Altitude measurements were discretized into bins
of size ∆h (e.g., ∆h = 50 m). For each species s and altitude bin b, the smoothed
probability was estimated using Laplace smoothing:

P (s, b) =
n(s, b) + α

Ns + α ·B

where:

• n(s, b) = number of sightings of species s in bin b,

• Ns = total number of sightings of species s,

• B = number of altitude bins,

• α = smoothing parameter (typically α = 1).

Prediction Phase: For a new sighting with altitude hnew, the corresponding bin bnew

is identified. The plausibility is then:

Paltitude = P (s, bnew)

If Paltitude < τaltitude, the sighting is considered implausible. The threshold τaltitude

typically corresponds to low-probability regions (e.g., τaltitude = 0.05).
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4.3.4 Machine Learning Design

Alongside domain-inspired filters, a suite of unsupervised Machine Learning (ML) algo-
rithms was employed to detect anomalies in the enriched dataset. A structured Machine
Learning pipeline was implemented, including consistent preprocessing, model training,
hyperparameter tuning, and prediction. Each algorithm was extensively tested and tuned
through systematic optimization procedures. The implementations were performed using
established Python libraries, as outlined below.

Preprocessing

Prior to model training, several preprocessing steps were conducted to standardize the
feature space:

• Coordinate Transformation: Geographic coordinates (latitude, longitude) were
projected into the EPSG:3035 coordinate system (European-centric metric pro-
jection) to better preserve distances for distance-based algorithms.

• Feature Engineering for Dates: Day-of-year features were transformed into
cyclical features using sine and cosine transformations:

sin_day = sin

(
2π

day_of_year
365

)
, cos_day = cos

(
2π

day_of_year
365

)
to maintain continuity across year boundaries.

• Feature Scaling: Altitude and the reprojected (x, y) coordinates were standard-
ized using a StandardScaler, ensuring that features had zero mean and unit
variance.

These transformations enabled fair model comparisons and stable numerical behavior
across the different Machine Learning algorithms.

Implementation of Models

Seven unsupervised Anomaly Detection algorithms were selected based on their effective-
ness in previous research and their suitability for the spatial and environmental nature
of bird observation data.
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Model Source Model Type Optimized Parameters
DBSCAN sklearn Density-based clustering eps
HDBSCAN hdbscan Density-based clustering min_cluster_size
Isolation Forest pyod Isolation-tree ensemble n_estimators, max_samples
AutoEncoder pyod Neural network hidden_neurons, activation_function
iNNE pyod Nearest-neighbor ensemble max_samples
k-NN pyod Distance-based method n_neighbors
LOF pyod Local density-based n_neighbors

Table 4.2: Overview of Machine Learning models, source libraries, model types, and op-
timized parameters.

DBSCAN DBSCAN was implemented using sklearn.cluster.DBSCAN. Reason
for selection: DBSCAN is a classic density-based clustering algorithm that identifies
clusters as areas of higher point density and treats sparse regions as outliers, making it
suitable for spatial Anomaly Detection tasks. Optimized parameter: The parameter eps
defines the maximum distance between two samples for them to be considered neighbors.
Optimizing eps is critical because it determines the scale at which clusters are formed.
If eps is too small, true clusters may be split, incorrectly flagging normal points as
anomalies. If eps is too large, distinct clusters may merge, causing true outliers to be
missed. Thus, careful selection of eps balances sensitivity and specificity for Anomaly
Detection.

HDBSCAN HDBSCAN was implemented using the hdbscan library. Reason for se-
lection: HDBSCAN states to improve on DBSCAN by allowing clusters of varying den-
sity, making it particularly effective for datasets with heterogeneous sampling densities,
such as bird sightings across diverse landscapes. Optimized parameter: The parameter
min_cluster_size defines the smallest number of points needed to form a cluster. Op-
timizing min_cluster_size controls how tolerant the algorithm is to noise. Smaller
values allow smaller clusters but risk treating noise as structure. Larger values suppress
small patterns, potentially missing legitimate but rare occurrences. Therefore, tuning
min_cluster_size is essential to distinguish between rare bird events and genuine
outliers.

Isolation Forest Isolation Forest was implemented using pyod.models.iforest.
Reason for selection: Isolation Forest is an ensemble-based method that isolates anoma-
lies by randomly partitioning feature space, offering good performance even in high-
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dimensional data. Optimized parameters: The n_estimators indicates the number of
isolation trees in the ensemble, while max_samples is the number of samples to draw
for each tree. Increasing n_estimators generally improves model stability but with
diminishing returns beyond a certain point. Adjusting max_samples affects how fine-
grained the isolation becomes: smaller samples can highlight rare patterns better but
may introduce noise. Thus, optimizing both parameters enhances the model’s ability to
robustly isolate rare or unusual bird observations.

AutoEncoder The AutoEncoder model was implemented using pyod.models.auto_-
encoder. Reason for selection: AutoEncoders can learn compressed internal represen-
tations of the input data, making them highly effective at capturing complex non-linear
structures and highlighting deviations. Optimized parameters: The hidden_neurons
sets the structure and size of hidden layers and the activation_function is the
non-linearity used within layers, which in this project can be relu or tanh. The hidden
layer structure determines how well the network can reconstruct normal observations
while amplifying reconstruction errors for anomalies, while the choice of activation func-
tion influences the model’s capacity to capture complex relationships: relu generally
favors sparse representations, while tanh captures smoother transitions. Tuning these
parameters is thus critical to ensure the AutoEncoder properly distinguishes between
typical and anomalous bird sightings.

iNNE The iNNE model was implemented using pyod.models.inne. Reason for
selection: iNNE combines the advantages of nearest-neighbor detection and ensemble
methods, making it robust to noise and varying densities. Optimized parameter: max_-
samples, defining the maximum number of samples used per ensemble model. A lower
max_samples value enhances sensitivity to local structure but risks instabilityand a
higher max_samples smooths the model but may miss rare patterns. Optimizing max_-
samples balances these effects to maximize detection performance across diverse species
and regions.

k-NN The k-NN model was implemented using pyod.models.knn. Reason for selec-
tion: k-NN is a simple yet powerful method that detects anomalies based on distances to
neighboring points, which is intuitive and effective for spatial data. Optimized parameter:
n_neighbors, the number of neighbors considered. Choosing a small n_neighbors
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value makes the model sensitive to local variations but increases false positives whereas
choosing a large n_neighbors value smooths the distance metric, potentially missing
true outliers. Thus, tuning n_neighbors is key to balancing local sensitivity and global
stability.

Local Outlier Factor (LOF) The LOF model was implemented using pyod.models.lof.
Reason for selection: LOF measures the local density deviation of a data point relative
to its neighbors, making it particularly suited for detecting anomalies in regions with
variable densities. Optimized parameter: The n_neighbors indicates the number of
neighbors used for density estimation. Having a small value for n_neighbors high-
lights small-scale anomalies but increases sensitivity to noise and having a large value for
n_neighbors focuses on broader trends but risks smoothing out interesting local devi-
ations. Optimizing n_neighbors enables LOF to detect both subtle and pronounced
anomalies effectively.

Model Training

During the training phase:

• All models except DBSCAN were trained using their fit() methods.

• DBSCAN, being a clustering method without a separate prediction phase, was
fitted and labeled directly using fit_predict().

The feature set included standardized x, y, and altitude values, as well as cyclical date
features and land cover percentages.

Model Prediction

The prediction stage differed slightly across models:

• HDBSCAN: Used approximate_predict(), treating label −1 as anomalies.

• DBSCAN: Directly used labels from fit_predict() (label −1 = outlier).
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• All other models: Anomaly scores were obtained via the decision_func-

tion() method. A sighting was classified as anomalous if the decision score fell
below a species-specific threshold:

anomaly if decision_score < τ

where τ was optimized per species to maximize F1 score, as described in the Eval-
uation Chapter (Section 5).

4.3.5 Review Interface

To complete the Anomaly Detection pipeline, a web-based reviewing interface was devel-
oped using Gradio. The main goal of this interface is twofold: first, to provide a proof-
of-concept demonstrating how expert reviews could be integrated into an Anomaly
Detection system; and second, to enable a qualitative evaluation of the predictions
generated by Emergent Filters and Machine Learning models.

The interface was hosted on Hugging Face Spaces to ensure easy accessibility for partic-
ipants via web browsers without requiring any local installations.

Explanation of Interface Components

Figure 4.2 shows the review interface. Each major component is briefly explained be-
low.

Name Selection At the start of a session, the reviewer selects their name from a
predefined list. This assignment ensures that each reviewer only accesses the correct
subset of the validation data, enabling controlled experiment tracking and avoiding data
duplication between reviewers.

Data Display The upper panel displays core sighting information, including the unique
identifier (id_validata), species name, date of observation, country, altitude, and atlas
code. This structured presentation ensures that the reviewer has immediate access to
essential contextual information needed for decision-making.
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Figure 4.2: Screenshot of the developed review interface for bird sighting Anomaly De-
tection.

Sighting Location Below the data panel, an interactive map displays the exact geo-
graphic location of the sighting using OpenStreetMap layers. The map provides spatial
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context, helping reviewers judge the plausibility of sightings based on known species
distributions and habitats.

Outlier Predictions In the “Outlier Predictions” section, the outputs of the Emergent
Filters and the Machine Learning models are summarized:

• Emergent Filters: Location/Date, Land Cover, and Altitude plausibility checks
are each visualized individually.

• Model Predictions: In this example the DBSCAN model output is displayed.

Each method outputs a simple green or red indicator: green indicates the method con-
siders the sighting plausible, while red indicates the method flags the sighting as an
outlier.

This visualization gives the reviewer an at-a-glance overview of which aspects of the
sighting were considered unusual by the system.

Review Section In the “Your Review” panel, the reviewer provides their final judg-
ment:

• They indicate whether they consider the sighting to be an Outlier or Not Outlier.

• If Outlier is selected, additional checkboxes appear, allowing the reviewer to spec-
ify which aspect(s) of the data they believe to be incorrect (e.g., Location, Date,
Altitude, Land Cover, or Other).

This structured feedback enables fine-grained evaluation of model errors and strengths.

Next Sighting Button After completing the review for one sighting, the reviewer
clicks the “Next Sighting” button to move to the next entry in their assigned dataset.
Reviewer progress is automatically logged, and upon completion, a thank-you page with
questions about the review process are displayed. Those questions will be further elabo-
rated in Chapter 5.
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Result Storage and Logging

All reviewer decisions are automatically logged into a CSV file, capturing:

• Entry ID

• Reviewer choice (Outlier/Not Outlier)

• If Outlier, specified reasons

• Timestamps

This structured review data forms the basis for qualitative evaluation of model and filter
performance, enabling later analysis of reviewer agreement and error types.

4.3.6 Summary

This chapter presented the full implementation pipeline developed to detect anomalous
bird sightings based on spatio-temporal and ecological patterns. Starting from a struc-
tured requirement analysis, both functional and non-functional needs were clearly
defined to guide the system design. A modular software architecture was then in-
troduced, enabling flexibility, maintainability, and targeted extension in the future.

Each major component of the system was subsequently detailed:

• Data Acquisition & Preparation: Raw bird sighting data from ornitho.ch and
ornitho.de were collected, harmonized, and taxonomically filtered to focus on 27
expert-selected species of interest.

• Feature Generation: Environmental features such as land cover compositions
and altitude were extracted and engineered to enrich the information available for
each sighting.

• Emergent Filter Design: Species-specific, domain-inspired plausibility filters
were developed for date-location relationships, habitat types, and altitudinal dis-
tributions, incorporating smoothing and probability modeling techniques.
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• Machine Learning Design: Seven unsupervised Anomaly Detection algorithms
(DBSCAN, HDBSCAN, Isolation Forest, AutoEncoder, iNNE, k-NN, LOF) were
systematically implemented, including detailed preprocessing steps and implemen-
tation details.

• Review Interface: A Gradio-based web interface was created to enable expert
reviewers to provide structured feedback on model outputs, generating a high-
quality labeled dataset for evaluation.

Through this integrated approach, a flexible, transparent, and scalable framework was
realized, setting the stage for the quantitative and qualitative evaluations discussed in
the subsequent chapters.
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5.1 Objective and Evaluation Strategy

The overarching goal of this chapter is to answer the research questions posed in Chapter 1
by evaluating the effectiveness of the developed Outlier Detection framework. The evalu-
ation is conducted from both a quantitative and a qualitative perspective. While quantita-
tive analyses provide objective measures of model and filter performance, the qualitative
evaluation incorporates expert assessments to examine whether flagged anomalies are
ecologically plausible or indicative of data issues.

This two-pronged strategy ensures a holistic understanding of the system’s behavior:
performance metrics capture predictive accuracy, while expert feedback sheds light on
interpretability and usefulness.

5.2 Data Basis for Evaluation

5.2.1 The validata Dataset

The evaluation is based on the validata dataset, a curated subset of the bird sightings that
was held out from the training data and augmented with controlled errors. It includes
only the 27 bird species selected in collaboration with ornithologists (see Chapter 4),
ensuring ecological relevance and feasibility for manual review.

In the dataset, each species is represented by a mix of unedited (plausible) and edited
(implausible) sightings. The artificial errors were designed by the ornithologists to simu-
late realistic mistakes or rare phenomena, providing a suitable benchmark for model and
filter evaluation.
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5.2.2 Error Types and Distribution

Table 5.1 summarizes the total number of entries, the number of manipulated (edited)
entries, and the amount of specific error types per species. In total, the dataset contains
3,902 edited sightings out of 417,886 total records.

Four main types of errors were introduced:

• Date errors: Observations shifted to biologically implausible dates (e.g., winter
observations for a migratory species).

• Distribution errors: Coordinates and altitude moved far outside the species’
typical range.

• Habitat errors: Sightings relocated to ecologically unsuitable habitats, which
could include minor coordinate and altitude changes.

• Count errors: Unusual number of individuals recorded for a single sighting (this
was not used in this project but is shown in the table).

These errors provide ground-truth labels against which the predictions of filters and
models can be compared in subsequent evaluations.

5.3 Quantitative Evaluation

5.3.1 Objective

The aim of the quantitative evaluation is to systematically measure how effectively each
Emergent Filter and unsupervised Machine Learning model detects artificially injected
errors in the validata dataset. For this, the following sub-questions are relevant:

• How well does each method perform overall in identifying manipulated entries?

• Do different feature sets influence model performance?

• Are some species or error types more difficult to detect than others?

To answer these questions, a two-phase analysis is conducted:
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name_species total_entries total_edited count date distribution (coord) habitat (coord)
Rock Ptarmigan 914 150 31 0 69 50
Western Capercaillie 790 149 19 0 69 61
Greater Scaup 2810 203 35 34 101 33
Twite 922 35 14 0 0 21
Water Pipit 12552 167 0 68 33 66
Whinchat 23706 150 19 35 63 33
Three-toed Woodpecker 1147 154 18 36 50 50
Common Sandpiper 24434 203 0 48 80 75
Icterine Warbler 15044 150 0 84 33 33
Griffon Vulture 1225 115 0 65 50 0
Great Crested Grebe 68101 151 0 0 50 101
Common Rosefinch 1900 135 0 34 68 33
Garganey 16239 199 49 84 33 33
Middle Spotted Woodpecker 23722 154 0 0 50 104
Western Orphean Warbler 1875 137 0 34 70 33
Reed Bunting 47408 151 0 34 33 84
Ruddy Shelduck 17454 120 0 0 70 50
European Stonechat 7335 100 0 0 50 50
Black Kite 49010 149 0 99 50 0
White-tailed Eagle 26050 149 0 34 82 33
Whooper Swan 12314 151 0 34 84 33
Eurasian Pygmy Owl 2746 150 0 0 50 100
Northern Wheatear 19304 150 0 84 33 33
White-throated Dipper 13616 153 0 0 0 153
Meadow Pipit 24778 155 0 34 33 88
Citril Finch 1571 110 0 34 43 33
Eurasian Scops Owl 919 112 0 34 45 33
All Species 417886 3902 185 909 1392 1416

Table 5.1: Key attributes for the 27 validata species, including total edited entries and
associated error types.

1. Performance Analysis: Determine the optimal settings for filters and models
and quantify their predictive performance.

2. Pattern Analysis: Identify systematic differences in performance across species
and error types.

5.3.2 Evaluation Metric: F1 Score

Performance is measured using the F1 score, which balances precision (i.e., how many
predicted anomalies are true anomalies) and recall (i.e., how many true anomalies are
correctly predicted). This is particularly appropriate for imbalanced datasets like val-
idata, where anomalous entries represent a small fraction of the total data.

Recall, also known as sensitivity, is a performance metric that measures the model’s
ability to correctly identify all relevant positive instances. It is defined as:
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Recall =
TP

TP + FN

where TP (True Positives) represents the number of correctly predicted positive cases,
and FN (False Negatives) denotes the number of actual positive cases that the model
failed to identify. A high recall indicates that the model successfully captures most of
the true positive instances, which is especially important in scenarios where missing a
positive case would be costly or critical.

Precision measures the accuracy of the positive predictions made by the model. It indi-
cates how many of the instances predicted as positive are actually correct. Precision is
defined as:

Precision =
TP

TP + FP

with TP and FN as previously defined. A high precision indicates that when the model
predicts a positive instance, it is usually correct, which is an important property in
contexts where false positives should be minimized.

The F1-Score is the harmonic mean of precision and recall and provides a single metric
that balances both. It is given by:

F1 = 2× Precision × Recall
Precision + Recall

This metric ensures that models are rewarded only when they are both sensitive and
specific, penalizing methods that generate too many false positives or miss too many
true outliers.

5.3.3 Performance Analysis

Grid Search for Thresholds and Parameters All Emergent Filters and ML models
were evaluated across a predefined set of thresholds or parameter configurations. These
grid searches were executed per species to account for inter-species differences and to
enable species-specific threshold optimization.
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Emergent Filters The following thresholds and feature inputs were tested for each
filter:

Filter Feature Inputs Threshold Values
Grid-Year Filter Grid Cell ID, Day-of-Year {1e-6, 1e-5, 0.0001, 0.001, 0.025, 0.05, 0.1,

0.135, 0.15, 0.25, 0.4, 0.5, 0.6}
Land Cover Filter Land cover percentages (e.g.,

forest_area_percent)
{0.001, 0.1, 0.2, 0.3, ..., 1.4}

Altitude Filter Altitude bins (50m) {0.0001, 0.0005, 0.001, 0.005, 0.05, 0.1,
0.15, 0.3, 0.4}

Table 5.2: Emergent Filters with used feature inputs and threshold search spaces.

Machine Learning Models The following feature sets were used to train and test
models with different environmental contexts:

Feature Set Included Features
No Land Cover Coordinates, Altitude, Date
No Altitude Coordinates, Land Cover, Date
No Coordinates Altitude, Land Cover, Date
No Date Coordinates, Altitude, Land Cover
All Features Coordinates, Altitude, Land Cover, Date

Table 5.3: Feature set configurations used for model training and evaluation.

Each model was evaluated using the hyperparameter search spaces defined in Table 5.4.

Evaluation Method For each species:

1. Emergent Filters and models generated binary predictions for all entries in vali-

data.

2. Predictions were compared against ground-truth labels to compute confusion ma-
trices.

3. F1 scores were calculated per species and averaged across all 27 species.

4. Best thresholds or hyperparameter configurations were selected for each species and
model based on the highest F1 score.

5. The best filters and models were compared with one another.
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Model Fixed Parameters Optimized Parameters (search space)
DBSCAN min_samples = 5 eps: {0.05-1.5, step=0.1}
HDBSCAN prediction_data = True min_cluster_size: {2, 25, 50,

100, 250, 450}
Isolation Forest random_state = 42 n_estimators: {25, 50, 100, 200,

300, 400}
contamination
max_samples: {100, 1000, 10000,
50000, 100000}

AutoEncoder epochs = 10
batch_size = 32
optimizer = adam
preprocessing = False

hidden_neuron_list:
{(12,6), (12,8,6),
(14,10,6), (16,12,8,6),
(64,32)}
hidden_activation: {relu, tanh}
contamination

iNNE random_state = 42 max_samples: {10-100, step=10}
contamination

k-NN method = mean n_neighbors: {2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 15, 17, 20}
contamination

LOF random_state = 42 n_neighbors: {10, 20, 50, 100,
150, 200, 250, 300, 350, 400,
500, 600}
contamination

Table 5.4: Fixed and optimized parameters with respective search spaces used in hyper-
parameter tuning.

5.3.4 Pattern Analysis

Species Group Analysis

To evaluate whether performance varies systematically across ecological traits, the 27
species in the validata dataset were classified into predefined biological and ecological
categories. The classification was provided by the DDA and includes both migration-
related attributes and habitat associations.

The following five grouping criteria were used:

• Migration Behavior: Indicates whether a species is non-migratory, partially mi-
gratory, or fully migratory.

• Migration Distance: Categorized into short-, medium-, long-distance and non-
migratory.
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• Breeding Habitat: Main habitat type used for breeding, including alpine regions,
forest, inland waters, open land, and others.

• Feeding Habitat (Breeding Season): Main foraging environment during the
breeding season.

• Feeding Habitat (Winter): Main foraging environment during winter.

The full species-to-group mappings used for grouped performance analysis are presented
in Table 5.5 and 5.6. Some categories require additional clarification:

• Special Locations: Refers to niche or artificial environments that do not fall into
traditional habitat categories (e.g., gravel pits, rail embankments, construction
zones).

• Not Defined: Indicates that habitat or migration traits could not be clearly
assigned based on existing data.

• Global Variables: Captures habitat preferences that are either too broad or
general to be assigned to a specific category.
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Table 5.5: Species grouped by breeding habitat and migration traits.
Species Breeding habitat Migration behavior Migration distance
Rock Ptarmigan Alpine regions Non Migratory Non Migratory
Western Capercaillie Alpine regions Non Migratory Non Migratory
Greater Scaup Inland waters Partial Migratory Short-distance
Twite Not defined Migratory Medium-distance
Water Pipit Alpine regions Migratory Short-distance
Whinchat Open land Migratory Long-distance
Three-toed Woodpecker Alpine regions Non Migratory Non Migratory
Common Sandpiper Inland waters Migratory Long-distance
Griffon Vulture Not defined Not defined Non Migratory
Icterine Warbler Multiple main habitat types Migratory Long-distance
Great Crested Grebe Inland waters Partial Migratory Short-distance
Common Rosefinch Multiple main habitat types Migratory Long-distance
Garganey Inland waters Migratory Long-distance
Middle Spotted Woodpecker Forest Non Migratory Non Migratory
Western Orphean Warbler Special locations Migratory Long-distance
Reed Bunting Inland waters Migratory Short-distance
Ruddy Shelduck Inland waters Partial Migratory Short-distance
European Stonechat Multiple main habitat types Migratory Long-distance
Black Kite Forest Non Migratory Non Migratory
White-tailed Eagle Inland waters Non Migratory Non Migratory
Whooper Swan Inland waters Partial Migratory Short-distance
Eurasian Pygmy Owl Forest Non Migratory Non Migratory
Northern Wheatear Special locations Migratory Long-distance
White-throated Dipper Inland waters Non Migratory Non Migratory
Meadow Pipit Multiple main habitat types Migratory Short-distance
Citril Finch Alpine regions Migratory Medium-distance
Eurasian Scops Owl Multiple main habitat types Migratory Long-distance
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Table 5.6: Species grouped by feeding habitat during breeding and winter seasons.
Species Feeding habitat (breeding) Feeding habitat (winter)
Rock Ptarmigan Alpine regions Alpine regions
Western Capercaillie Alpine regions Alpine regions
Greater Scaup Inland waters Coast and sea
Twite Not defined Coast and sea
Water Pipit Alpine regions Inland waters
Whinchat Open land Special locations
Three-toed Woodpecker Alpine regions Alpine regions
Common Sandpiper Inland waters Multiple main habitat types
Griffon Vulture Not defined Global variables
Icterine Warbler Multiple main habitat types Forest
Great Crested Grebe Inland waters Inland waters
Common Rosefinch Multiple main habitat types Global variables
Garganey Inland waters Inland waters
Middle Spotted Woodpecker Forest Forest
Western Orphean Warbler Special locations Forest
Reed Bunting Inland waters Multiple main habitat types
Ruddy Shelduck Open land Multiple main habitat types
European Stonechat Multiple main habitat types Multiple main habitat types
Black Kite Inland waters Multiple main habitat types
White-tailed Eagle Inland waters Open land
Whooper Swan Inland waters Open land
Eurasian Pygmy Owl Forest Forest
Northern Wheatear Special locations Special locations
White-throated Dipper Inland waters Inland waters
Meadow Pipit Multiple main habitat types Open land
Citril Finch Alpine regions Special locations
Eurasian Scops Owl Open land Forest

Error Type Analysis

Each manipulated sighting in validata was labeled with its error type. Predictions
were grouped by error type for each filter and the best model. The F1 scores were
calculated for each error type:

• Date Errors: Can be detected by Grid-Year Filter and all ML-Models.
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• Distribution Errors: Can be identified via Grid-Year Filter and spatial trained
ML-Models.

• Habitat Errors: Can be captured by the Land Cover Filter and all ML-Models
which were trained with spatial features.

By analyzing performance across error types, it can be determined which filters or models
are specialized and which are generalizable.

5.3.5 Summary

This quantitative evaluation establishes a structured framework to measure the effec-
tiveness of each method and detect patterns across species and error types. Results of
this evaluation will be presented and discussed in the Chapter 6 and 7 and are used to
validate the system’s accuracy, limitations, and ecological plausibility.

5.4 Qualitative Evaluation

5.4.1 Objective

The qualitative evaluation aims to assess the usability, interpretability, and ecological
plausibility of the Outlier Detection system from a domain-expert perspective. While
quantitative metrics reveal how well models and filters perform in terms of accuracy, they
do not capture how these tools are perceived by practitioners in real-world applications.
By incorporating the judgments and feedback of professional ornithologists, this section
seeks to understand whether the outputs are trusted, actionable, and supportive of expert
workflows. Additionally, the qualitative review highlights strengths and limitations in
the current system design that are not evident through statistical evaluation alone. This
expert feedback serves as a foundation for refining both the detection methods and the
human–AI interface in future iterations.
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5.4.2 Review Design

To complement the quantitative metrics with expert insight, a small-scale qualitative
review was conducted. Two professional ornithologists, hereafter referred to as R1 and
R2, interacted with the web-based review interface described in Chapter 4 to assess the
plausibility of automatically flagged bird sighting records.

Sampling Strategy

For each reviewer, a stratified sample of 150 entries from the 2023 validata dataset
was generated. The sampled records represented the same 27 species used in the training
phase (Table 5.1), ensuring continuity and ecological relevance. Each reviewer received:

• 75 manipulated entries, evenly distributed across three error types:

– 25 Date anomalies (seasonal misplacements),

– 25 Distribution anomalies (coordinate and altitude shifts),

– 25 Habitat anomalies (inconsistent land cover).

• 75 unedited entries serving as plausible controls.

This yielded a balanced design per reviewer, half anomalous, half control, and a total
corpus of 300 reviewed sightings (2× 150), with 150 true anomalies and 150 true
negatives.

Species selection followed the same constraints as the quantitative evaluation (Section 5),
covering all 27 species in approximately equal proportions across both manipulated and
control samples.

Annotation Workflow

Each entry was presented via a dedicated web interface (described in detail in Chapter 4),
which included species metadata, an interactive map, and the outputs of all filters and
the model. Reviewers assessed the plausibility of each sighting and provided binary
judgments alongside explanatory labels.
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Contrary to standard blind-review protocols, the outputs of the filters and the model
were visible before the reviewer made their decision. This design choice reflects a realistic
application context where expert judgment is intended to complement, not independently
verify, model output. While this introduces the possibility of confirmation bias, it enables
a more practical evaluation of interpretability and support value.

Logging and Storage

Each reviewer’s actions were logged automatically into a CSV file, capturing:

• Reviewer ID and country

• Timestamp

• Entry ID

• Final judgment (Outlier / Not Outlier)

• Selected reason(s), if applicable

This dataset forms the ground-truth label set used for measuring reviewer-model agree-
ment and supports qualitative interpretation in Chapter 6.

Post-review Feedback

At the end of each review session, a short open-form questionnaire was displayed, ask-
ing:

1. Did any filter or model stand out-positively or negatively?

2. Did the automated predictions influence your decision-making?

3. Did you find the predictions helpful?

4. Which do you prefer: the detailed filter outputs or the binary DBSCAN result?

5. Do you have any other comments or suggestions?
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Those questions were chosen because they can capture the current state of the filters and
models but also gather ideas on how to improve this approach. Answers were collected
via email and coded thematically. These insights will be discussed in the qualitative
results section to evaluate usability, trustworthiness, and potential improvements.

Limitations

This setup reflects a trade-off between experimental control and ecological validity. The
simultaneous display of predictions may have shaped expert responses, but also simulates
real-world use cases where decision support tools aim to inform rather than replace
human judgment. While the sample size is limited, both reviewers were experienced
ornithologists deeply familiar with the system, providing high-quality feedback for initial
validation.
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6.1 Quantitative Evaluation

6.1.1 Performance Analysis

Emergent Filters

Figure 6.1 visualizes the F1 score distributions of the three Emergent Filters-Grid-Year,
Land Cover, and Altitude across all 27 bird species. The Grid-Year filter yielded the
highest average F1 score with the smallest interquartile range. The Altitude filter followed
closely, with moderately higher variance and a slightly lower mean. The Land Cover filter
exhibited the broadest spread and the lowest median performance, although outliers
indicate that it performed very well for a few species.

Figure 6.1: F1 score distribution for each Emergent Filter across 27 species.
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Table 6.1 provides the exact threshold and best F1 score obtained for each species and
each filter. The threshold yielding the best performance varied widely. For the Grid-Year
filter, most species achieved optimal results at the lowest tested threshold (1e-06), with
only a few preferring higher settings (0.001 or 0.025). For the Altitude filter, optimal
thresholds clustered primarily around 0.0005 and 0.005. The Land Cover filter’s optimal
thresholds were more dispersed across the range from 0.001 to 1.1.

Species Grid-Year Filter Land Cover Filter Altitude Filter
Rock Ptarmigan 0.495 (0.025) 0.333 (0.75) 0.800 (0.005)
Western Capercaillie 0.505 (1e-06) 0.636 (0.75) 0.485 (0.05)
Greater Scaup 0.219 (1e-06) 0.137 (0.6) 0.400 (0.005)
Twite 0.000 (1e-06) 0.046 (0.25) 0.083 (0.005)
Water Pipit 0.143 (0.025) 0.056 (1.05) 0.231 (0.0005)
Whinchat 0.500 (1e-06) 0.048 (1.1) 0.239 (0.0005)
Three-toed Woodpecker 0.673 (1e-06) 0.826 (0.75) 0.667 (0.005)
Common Sandpiper 0.275 (1e-06) 0.024 (1.0) 0.208 (0.0001)
Griffon Vulture 0.439 (0.025) 0.000 (0.001) 0.187 (0.05)
Icterine Warbler 0.602 (1e-06) 0.080 (1.1) 0.682 (0.0005)
Great Crested Grebe 0.188 (1e-06) 0.049 (1.0) 0.319 (0.0001)
Common Rosefinch 0.531 (1e-06) 0.206 (0.75) 0.427 (0.0005)
Garganey 0.369 (0.001) 0.030 (1.05) 0.512 (0.0005)
Middle Spotted Woodpecker 0.255 (1e-06) 0.189 (1.0) 0.263 (0.005)
Western Orphean Warbler 0.621 (1e-06) 0.452 (0.75) 0.366 (0.005)
Reed Bunting 0.295 (1e-06) 0.043 (1.0) 0.408 (0.001)
Ruddy Shelduck 0.274 (1e-06) 0.066 (1.0) 0.442 (0.001)
Black Kite 0.574 (1e-06) 0.000 (0.001) 0.893 (0.0001)
White-tailed Eagle 0.458 (1e-06) 0.015 (1.05) 0.512 (0.0005)
Whooper Swan 0.297 (1e-06) 0.010 (0.75) 0.391 (0.005)
Eurasian Pygmy Owl 0.094 (0.025) 0.763 (0.75) 0.179 (0.005)
Northern Wheatear 0.580 (1e-06) 0.021 (1.05) 0.391 (0.0001)
White-throated Dipper 0.000 (1e-06) 0.191 (1.0) 0.417 (0.001)
Meadow Pipit 0.160 (0.001) 0.079 (1.0) 0.286 (0.0005)
Citril Finch 0.529 (1e-06) 0.667 (0.75) 0.719 (0.005)
Eurasian Scops Owl 0.514 (0.025) 0.774 (0.75) 0.581 (0.005)
European Stonechat 0.238 (1e-06) 0.545 (1.0) 0.679 (0.0001)

Table 6.1: Best F1 scores and thresholds for each Emergent Filter per species. Format:
F1 (threshold)
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Machine Learning Models

Comparison of Feature Groups Figure 6.2 shows the average F1 score for all seven
models - AutoEncoder, DBSCAN, HDBSCAN, Isolation Forest, KNN, LOF, and iNNE
- under five feature variants: full feature set ("All"), exclusion of altitude, coordinates,
date, and land cover.

KNN using the full feature set achieved the highest overall performance with an average
F1 score of 0.65. The second-best configuration for KNN was the exclusion of land cover,
which yielded nearly identical scores. Similarly, iNNE reached competitive performance
with both the full feature set and the no land cover variant.

AutoEncoder, LOF, and DBSCAN performed best using all features, with slight decreases
when excluding land cover. Isolation Forest showed a notable increase in performance
when land cover was removed. In contrast, HDBSCAN underperformed across all feature
configurations.

Across all models, excluding the date feature consistently led to the lowest average scores
(except for HDBSCAN), followed by the exclusion of altitude, and then coordinates. This
trend was consistent and observed in AutoEncoder, DBSCAN, Isolation Forest, KNN,
LOF, and iNNE.

Figure 6.2: Average F1 score by model and feature removal variant.
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Comparison of Algorithms Figure 6.3 displays the distribution of F1 scores for the
best-performing variant of each model. The boxplot includes individual data points per
species.

KNN with all features yielded the best overall distribution, exhibiting the highest median
F1 score and the narrowest spread across species. iNNE and AutoEncoder followed closely
behind, both showing high median performance and moderate variance. Isolation Forest
and LOF demonstrated good average scores but greater variability, with LOF showing a
wide interquartile range. DBSCAN showed a tighter spread but slightly lower median.
HDBSCAN had the lowest scores overall, with the majority of species clustering around
F1 scores below 0.3.

Figure 6.3: Best configuration per model: F1 score distributions across all species.

Table 6.2 summarizes the exact hyperparameters, thresholds, and F1 scores for the best-
performing KNN model per species, using the full feature set. The number of neighbors
and the decision thresholds varied considerably across species.
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Species Neighbors Threshold F1 Score
Rock Ptarmigan 15 0.794 0.794
Western Capercaillie 3 0.566 0.815
Greater Scaup 10 0.721 0.517
Twite 2 0.831 0.773
Water Pipit 7 0.656 0.642
Whinchat 4 0.521 0.577
Three-toed Woodpecker 6 0.592 0.837
Common Sandpiper 8 0.588 0.537
Griffon Vulture 6 0.629 0.492
Icterine Warbler 8 0.703 0.848
Great Crested Grebe 10 0.558 0.424
Common Rosefinch 7 0.632 0.667
Garganey 20 0.618 0.642
Middle Spotted Woodpecker 3 0.433 0.396
Western Orphean Warbler 9 0.541 0.740
Reed Bunting 3 0.597 0.674
Ruddy Shelduck 2 0.546 0.584
Black Kite 8 0.642 0.745
White-tailed Eagle 2 0.635 0.686
Whooper Swan 4 0.605 0.623
Eurasian Pygmy Owl 4 0.620 0.753
Northern Wheatear 2 0.491 0.725
White-throated Dipper 4 0.644 0.541
Meadow Pipit 8 0.610 0.494
Citril Finch 3 0.691 0.727
Eurasian Scops Owl 4 0.793 0.766
European Stonechat 2 0.509 0.757

Table 6.2: Best parameter settings and F1 scores for KNN model (all features) per species.

Emergent Filters vs. Machine Learning Models

Figure 6.4 compares the KNN model (all features) against the three Emergent Filters.
KNN scored consistently higher across all species and demonstrated a smaller variance
in F1 values. The Grid-Year and Altitude filters showed a broader distribution, while
Land Cover had the lowest F1 values across most species.
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Figure 6.4: F1 scores of the best model (KNN) versus Emergent Filters.

6.1.2 Pattern Analysis

Species Performance Patterns

To evaluate model performance across different ecological traits, species-level F1 scores
from the best-performing model configuration (KNN using all features) were grouped and
analyzed along five classification axes: migration distance, migration behavior, breeding
habitat, feeding habitat during breeding season, and feeding habitat during winter. Each
group analysis includes 27 species.

Migration Distance Figure 6.5 shows the distribution of F1 scores grouped by migra-
tion distance. Long-distance migrants achieved relatively high F1 scores with moderate
dispersion. Medium-distance migrants displayed consistently strong F1 values across
only two species. Non-migratory species showed a broad range with a high upper bound.
Short-distance migrants had the lowest median F1 scores among the defined categories.
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Figure 6.5: F1 scores grouped by migration distance.

Migration Behavior As shown in Figure 6.6, non-migratory species showed the high-
est median F1 scores although the widest variability. Fully migratory species followed
closely in performance with slightly lower dispersion. Partial migrants had the lowest
median values and displayed narrow distribution of F1 scores within a lower range.

Figure 6.6: F1 scores grouped by migration behavior.
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Breeding Habitat In Figure 6.7 the F1 score distributions are grouped by breeding
habitat type. Species classified under “Alpine regions” achieved the highest overall scores
and low variance. “Special locations” ranked second, with consistently high and stable
F1 values, but with only a small sample size. “Multiple main habitat types” has a
very comparable median score but more wide spread results than “Special locations”.
Birds associated with forest habitats also showed broader variation, while inland water
breeders had the lowest median F1 scores. Species from the “Not defined” category
showed intermediate scores.

Figure 6.7: F1 scores grouped by breeding habitat.

Feeding Habitat During Breeding Season Figure 6.8 displays the performance
grouped by feeding habitat used during the breeding season. Species feeding in “Alpine
regions” showed the highest F1 values. “Special locations” followed closely with narrow
dispersion. “Forest” and “Multiple main habit types” groups showed the most dispersed
scores. Birds associated with “Open land”, “Not defined”, “Inland waters” and “Forest”
categories had lower median values.
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Figure 6.8: F1 scores grouped by feeding habitat during breeding season.

Feeding Habitat During Winter Figure 6.9 groups species by their feeding habitats
during the winter season. The “Alpine regions” group maintained high scores with limited
variability. The “Special locations” and “Forest” groups also showed elevated and stable
scores. “Coast and sea” showed the broadest distributions. Birds grouped under “Global
variables”, “Inland waters”, and “Open land” displayed wider variance and generally lower
scores. “Multiple main habitat types” showed moderate performance.

Figure 6.9: F1 scores grouped by feeding habitat during winter.
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Error Type Performance

Figure 6.10 displays F1 scores by method and error type (habitat, spatial distribution,
and date). The KNN model outperformed all Emergent Filters in every category. The
Altitude filter achieved the second-best results for habitat and spatial errors. Grid-Year
was third in performance across all types. The Land Cover filter yielded the lowest
performance in all categories.

Figure 6.10: F1 scores by error type and method.

6.2 Qualitative Evaluation

6.2.1 Reviewer Participation

Two expert ornithologists, R1 and R2, participated in a structured qualitative review
using the Gradio interface described in Chapter 4. Each reviewed a stratified sample of
150 records, consisting of 75 true anomalies (25 for each error type: date, distribu-
tion, and habitat) and 75 unaltered control records. In total, 300 annotated cases
were produced.
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6.2.2 Overall Impressions

Both reviewers provided generally positive feedback regarding the Outlier Detection tool.
R1 expressed enthusiasm, stating they were "pretty excited—the tool already flags many
cases we would probably miss." R2 highlighted the tool’s potential in operational con-
texts, describing it as "useful" and "time-saving."

6.2.3 Per-Model Feedback

Emergent Land-Cover Filter This filter was praised for its ability to flag clear
mismatches in forest versus open land habitats. However, both reviewers criticized the
fixed 1 km buffer, noting that it was either too narrow (for wide-ranging species like
Black Kite) or too coarse (for linear habitat specialists like White-throated Dipper). They
recommended adapting the buffer size to the ecological profile of each species.

Altitude Filter Reviewers appreciated the filter’s concept, but noted that many false
positives stemmed from sighting imprecision. Since bird locations were approximated
based on observer coordinates, birds spotted from a distance might appear in an ecolog-
ically implausible altitude zone and be therefore flagged. Hierarchical or more flexible
spatial windows were suggested as improvements.

Grid-Year (Date/Location) Filter No major weaknesses were reported. The filter
worked reliably for seasonal outliers, particularly when date and location combinations
clearly contradicted known species behavior. Some anomalies (e.g. Water Pipit in sum-
mer) required context from additional cues like habitat.

Unsupervised Models Both experts singled out DBSCAN as particularly effective.
It provided clear binary output while still aligning with their intuition in many cases.

6.2.4 Influence and Helpfulness of Predictions

• R1 consciously attempted to decide before reviewing model outputs and noted that
"the models and I often agreed."
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• R2 acknowledged that predictions "partly influenced" their final decisions.

Both reviewers agreed that the automated predictions were helpful and enhanced their
confidence in labeling decisions.

6.2.5 Preference for Output Format

R1 valued the multi-dimensional input from the filters and model: "If all filters and the
models said the same, it was always an error." R2 liked the transparency of the filter
breakdowns but also appreciated the simplicity of DBSCAN’s binary flag. A hybrid
output—a binary alert with expandable detailed cues—was considered optimal by both
reviewers.

6.2.6 User Interface Suggestions

1. Spatial context. Incorporate alternative basemaps such as SwissTopo with aerial
imagery to assist with terrain interpretation. Show sighting accuracy (e.g., exact
point vs. 1 km grid cell).

2. Interface layout. Minimize vertical scrolling by condensing information onto a
single screen; a smaller, zoomable map is acceptable.

3. Progress tracking. R2 suggested adding a counter or progress bar to track
remaining records.

6.2.7 Redefining "True Outliers"

R1 proposed expanding the gold standard definition to include both the synthetic er-
rors and additional records that reviewers manually labeled as erroneous. This revised
definition may serve as the foundation for future precision-recall evaluations.

63



6 Results

6.2.8 Implications for Future Work

The qualitative feedback underscores that the current limitations are not conceptual but
configurational. Key areas for enhancement include:

1. species-specific buffer sizes for land cover,

2. adaptive altitude windows to address spatial imprecision,

3. a redesigned user interface with improved usability and interpretability.

In conclusion, the qualitative evaluation supports the results of the quantitative assess-
ment: automated Outlier Detection, when transparently communicated and ecologically
contextualized, is a valuable addition to bird data validation workflows.
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RQ 1 - Comparative Model Performance

To what extent do statistical (Emergent Filter) models and Machine Learning models dif-
fer in their accuracy for detecting user-generated errors, as measured by the F1-score?

This research question evaluates the relative effectiveness of Emergent Filters and unsu-
pervised Machine Learning (ML) models in detecting user-generated anomalies in bird
sighting records. The comparison is centered on the F1-score, which provides a balanced
metric combining both precision and recall. Quantitative results demonstrate substantial
performance differences between the two model families, and qualitative expert feedback
further contextualizes these findings.

Quantitative Comparison of Overall Performance

The results from the quantitative evaluation clearly indicate that ML models outperform
Emergent Filters across all tested species and error types. As shown in Figure 6.4, the
K-Nearest Neighbors (KNN) model using the full feature set yielded the highest
average F1-score across all species, with a mean performance of 0.65 and minimal inter-
species variance. In contrast, the best-performing Emergent Filter (Grid-Year) achieved
substantially lower F1-scores, with a mean below 0.5 and a wider performance spread.

Further evidence is provided in Table 6.1, where most filters achieved only moderate F1-
scores for individual species. Although certain filters such as the Altitude filter performed
well for selected mountain and forest species (e.g., Rock Ptarmigan, Boreal Owl), these
performances were isolated exceptions rather than indicative of consistent accuracy across
species. Meanwhile, models such as iNNE and AutoEncoder exhibited robust results
across diverse ecological contexts.
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The superiority of ML models is further reinforced by Figure 6.3, where the F1-score
distributions of the best variant of each model are shown. All ML models-with the
exception of HDBSCAN-outperformed the Grid-Year, Altitude, and Land Cover filters.
The statistical filters also displayed greater interquartile ranges and more frequent low
outliers, highlighting their limited generalizability.

Qualitative Validation by Expert Reviewers

Qualitative evidence from expert ornithologists corroborates the numerical findings. Both
reviewers, R1 and R2, described the automated predictions-particularly those of the
ML models-as helpful and time-saving. R1 remarked that if all filters and the model
agreed, it was always an error, indicating that model agreement reinforced expert trust.
Importantly, both reviewers highlighted the Machine Learning approach as particularly
intuitive and valuable.

However, the filters were not dismissed outright. The Grid-Year filter was described
as reliable for seasonal outliers and was seen as ecologically transparent. Reviewers
appreciated the breakdown of filter-specific predictions, which helped them understand
the rationale behind a flagged outlier.

Interpretation and Implications

The performance disparity between ML models and Emergent Filters can be attributed
to several factors. Emergent Filters rely on static, species-specific lookup tables and
plausibility thresholds. While biologically grounded, these filters are constrained by
rigid assumptions (e.g., circular smoothing windows, fixed habitat buffers) and cannot
easily adapt to subtle multidimensional outliers or species with irregular distributions. In
contrast, ML models leverage the full joint feature space, capturing complex interactions
between location, date, altitude, and land cover, thereby enabling superior generalization
across varied species and habitats.

Despite this, filters offer higher transparency and interpretability. Their ecological speci-
ficity may make them more suitable for narrow use cases, such as preliminary filtering or
use in regions with limited data availability. In operational settings, a hybrid approach-
combining the flexibility of ML with the interpretability of filters-may offer the best
trade-off.
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Conclusion

In conclusion, ML models-particularly KNN, iNNE, and AutoEncoder-consistently out-
performed statistical Emergent Filters in detecting manipulated bird sighting records.
Their superiority was evident across overall accuracy metrics, interspecies robustness,
and expert evaluations. However, the interpretability and domain specificity of Emer-
gent Filters still provide valuable complementary insights. A combined workflow may
offer optimal detection performance and user trust in applied biodiversity monitoring
systems.

RQ 2 - Error-type-specific Performance

How does the detection performance of the investigated model approaches vary across the
predefined error types (e.g., date errors, land-cover errors, altitude errors)?

This research question explores whether the detection accuracy of Emergent Filters and
Machine Learning (ML) models varies depending on the specific type of artificially in-
jected error. The three error types considered in this study were: date errors, distribu-
tion errors (spatial shifts in coordinates and altitude), and habitat errors (ecologically
implausible land cover conditions). Each method’s ability to capture these distinct error
types was evaluated using F1-scores computed on stratified subsets of the validata

dataset.

Quantitative Analysis of Error-type Detection

Figure 6.10 presents a breakdown of F1-scores across all models and filters by error type.
The results show a clear and consistent pattern: the KNN model (with all features)
achieved the highest F1 scores across all three error categories, confirming its robustness
and generalizability. It was able to detect date errors, habitat errors, and distribution
errors with high accuracy and low variance, making it the most reliable model for broad-
spectrum error detection.

Among the Emergent Filters, performance was more heterogeneous and specialized:
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• Date Errors: The Grid-Year filter, which directly encodes seasonal and spatial
plausibility via lookup tables, showed the strongest performance among the Emer-
gent Filters in this category. This confirms that such biologically-informed temporal
filters are effective in capturing seasonal implausibilities.

• Habitat Errors: The Altitude filter outperformed the Land Cover filter and Grid-
Year in identifying habitat-related anomalies. Although the Land Cover filter is
designed for this purpose, its effectiveness was limited by rigid buffer configurations
and high interspecies variability, as observed in Table 6.1.

• Distribution Errors: These were best detected by the Altitude filter among the
statistical approaches. Grid-Year provided moderate performance, while the Land
Cover filter underperformed significantly in all error categories.

Despite their ecological basis, none of the filters matched the F1-scores of the best ML
model (KNN) for any error type. The performance gap was especially pronounced for
habitat errors, where KNN nearly doubled the F1-score of the Altitude filter.

Qualitative Evaluation by Reviewers

Reviewers’ responses provide nuanced insights into model effectiveness per error type.
Both ornithologists confirmed that the Machine Learning model predictions often aligned
with their own judgments across all categories. For date-related anomalies, R1 explicitly
noted that the Grid-Year filter worked reliably, especially when sightings contradicted
known seasonal ranges.

In contrast, habitat-related errors presented more challenges for both filters and experts.
R2 remarked that false positives were common when birds were observed from a distance-
making land cover and altitude misrepresentative of the actual habitat. R1 criticized the
fixed 1 km buffer for land cover calculations, stating that the filter’s effectiveness strongly
depends on the species’ ecology and mobility.

Distribution anomalies were often successfully flagged by both filters and ML models.
The Altitude filter was frequently cited as informative, though R2 warned about impreci-
sion due to the coordinate granularity of sightings. These qualitative observations align
with the quantitative data and reinforce the importance of ecological nuance and spatial
resolution in filter design.
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Interpretation and Implications

The detection capabilities of different methods clearly vary by error type. Emergent
Filters are constrained by their singular focus on one ecological axis-seasonality, altitude,
or habitat-whereas ML models consider multidimensional patterns. This enables them
to detect more subtle or overlapping anomalies. However, although not as successful as
the ML model overall, the success of filters for specific error types (e.g., Grid-Year for
date, Altitude for spatial shifts) demonstrates their utility in targeted contexts.

For applications where error types are known or can be predicted in advance, a hybrid
strategy may prove advantageous: presenting outputs from both Emergent Filters and
ML models can offer ornithologists multiple perspectives, enabling them to form a more
informed judgment based on diverse model outputs.

Conclusion

Detection performance varies significantly by error type. The KNN model exhibited
the best overall performance across all categories, confirming its suitability as a general-
purpose detector. Emergent Filters demonstrated strengths in specific areas-particularly
date and altitude plausibility-but were limited in scope and flexibility. Both quantitative
and qualitative results support the conclusion that ML models, especially those using
comprehensive feature sets, provide a more robust solution for diverse error detection in
ornithological datasets.

RQ 3 - Species- or Guild-specific Performance

To what degree does model performance differ among avian species or ecological guilds?

This research question explores whether systematic differences exist in the ability of the
Outlier Detection models and filters to identify erroneous sightings across different bird
species and ecological groups. Understanding such variation is essential for designing
model ensembles or filter strategies that generalize across avian taxa with differing eco-
logical traits and movement patterns.
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Quantitative Differences Across Species

Figure 6.3 and Table 6.2 reveal substantial inter-species differences in F1 scores, even
when using the best-performing model (KNN with all features). For example, species
such as Icterine Warbler (F1 = 0.85), Three-toed Woodpecker (F1 = 0.84), and Western
Capercaillie (F1 = 0.82) achieved high detection scores, whereas Great Crested Grebe (F1
= 0.42) and Middle Spotted Woodpecker (F1 = 0.40) scored substantially lower. These
differences likely reflect the ecological specificity and distributional consistency of each
species, although interpretation of the causes is reserved for the next chapter.

Even the Emergent Filters (Table 6.1) showed uneven results across species. For instance,
the Land Cover filter yielded an F1 score of 0.83 for Three-toed Woodpecker but only 0.02
for Common Sandpiper. Similar variability was found for the Altitude and Grid-Year
filters. This emphasizes the importance of training models for each species individually
and adjusting the parameters accordingly.

Species Grouping Patterns

To understand how ecological traits influence Anomaly Detection performance, species-
level F1 scores from the best-performing model (KNN with all features) were grouped
and analyzed along five groups. These included migration behavior, migration distance,
breeding habitat, feeding habitat during the breeding season, and feeding habitat during
winter. The analysis provides insights into which ecological traits may support or hinder
detection. In this the small sample size of 27 species warrants caution in generalizing the
results.

Species breeding or feeding in alpine regions consistently achieved the highest F1 scores
across all habitat-related groupings. Their performance was not only strong but also
stable, suggesting that the spatial and temporal consistency of alpine-associated sightings
makes them more easily distinguishable from outliers. Similarly, species linked to special
locations-such as gravel pits, rocky outcrops, or ruderal sites-performed surprisingly well
across groupings. Their distinct spatial and isolated occurrence patterns may make them
particularly useful for Anomaly Detection. However, it should be noted that the sample
size for these classes is quite small, so caution should be exercised when generalizing
these findings.
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In contrast, species associated with inland waters, open land, or undefined habitats
showed weaker and more variable performance. These habitat types may reflect broader
or overlapping ranges, complicating the identification of outlier sightings.

Regarding migration traits, non-migratory and long-distance migratory species per-
formed best. The strong performance of non-migratory birds likely stems from their
restricted and stable spatial patterns. Long-distance migrants, often follow well-defined
routes and timing, which could be making deviations easier to detect. Short-distance
migrants and especially partial migrants yielded the lowest F1 scores. The variability
in timing and behavior within these groups may result in blurred detection boundaries.

In summary, the grouping-based evaluation revealed that ecological consistency-whether
in space (alpine breeders), behavior (non-migrants), or habitat specificity correlates with
stronger Anomaly Detection performance. Conversely, flexible or poorly defined patterns
in habitat use or migration behavior reduce model accuracy. While these trends are
informative, they should be interpreted with care due to the limited number of species
in the dataset.

Reviewer Observations on Species-specific Behavior

Reviewers also identified species-related variability in anomaly detectability. R1 and
R2 both noted that certain wide-ranging or nomadic species, such as Black Kite or
Griffon Vulture, generated higher rates of false positives in the filters due to their flexible
habitat use and long-range movement. Conversely, sedentary species like Middle Spotted
Woodpecker were easier to assess and classify.

Additionally, R2 emphasized that habitat-based filters were more effective for forest
specialists than for birds inhabiting transitional or human-modified environments. Re-
viewers recommended tailoring filter behavior to species’ ecological characteristics, which
supports the idea of guild-aware modeling.

Interpretation and Implications

Both model- and filter-based detection performance is strongly species-dependent. Mi-
gratory status, habitat specificity, and ecological niche width all influence how easily

71



7 Discussion

anomalies can be detected. This highlights the need for adaptive strategies that consider
species-specific data characteristics during both model training and threshold tuning.

These results also suggest that future implementations should allow for taxon-specific
customization-such as adaptive buffer sizes for habitat features or flexible altitude bins-
rather than applying uniform configurations across all species. In environments like citi-
zen science platforms, where species differ widely in detectability and ecological behavior,
such flexibility may be crucial for reliable Anomaly Detection.

Conclusion

Model performance varies considerably across species and ecological guilds. Species
breeding or feeding in alpine regions or in structurally distinct habitats yielded the high-
est F1 scores. In contrast, species associated with inland waters, or partially migra-
tory behavior performed generally less reliably. These findings highlight the importance
of incorporating species ecology into model design and suggest that the most accurate
Anomaly Detection frameworks will require adaptive or guild-specific configurations. The
quantitative findings were in line with statements by the ornithologists.

RQ 4 - Influence of Features

Which features contribute significantly to the detection performance of the Machine Learn-
ing model?

This research question investigates the role of individual feature groups in enabling ef-
fective Anomaly Detection by Machine Learning models. The focus lies in identifying
which spatial and ecological features-such as coordinates, altitude, land cover, or tem-
poral attributes-are most critical for the models’ ability to distinguish manipulated from
valid records.

Quantitative Feature Ablation Results

To evaluate the contribution of each feature, models were trained and tested under five
predefined feature configurations: (1) All Features, (2) No Land Cover, (3) No Altitude,
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(4) No Coordinates, and (5) No Date. These ablations were applied uniformly across all
models.

Figure 6.2 reveals consistent patterns across models. For nearly all algorithms, the highest
average F1 scores were achieved when using the full feature set or when excluding only
the land cover features. For example, KNN with all features yielded the best mean F1
score of 0.65, and removing land cover resulted in only a marginal drop in performance.
iNNE showed a similar pattern, with very competitive performance in both the full and
no-land-cover configurations.

AutoEncoder, LOF, and DBSCAN also benefited most from the full feature set. In these
models, land cover appeared helpful but non-essential, as performance decreased only
slightly when it was removed.

The Isolation Forest model, however, exhibited an exception: its performance improved
noticeably when land cover was excluded. This may indicate sensitivity to noise intro-
duced by high-dimensional habitat representations in tree-based models.

The removal of the date feature universally impaired performance across all models
(with the exception of HDBSCAN, which performed poorly regardless of features). Date
removal yielded the lowest scores, followed by exclusion of altitude and coordinates.
These findings underscore the crucial role of temporal information in identifying sea-
sonal anomalies.

Ranking of Feature Importance

Based on the aggregate patterns across models, the relative importance of feature groups
can be ranked as follows:

1. Date (Day-of-Year): Most important feature, with consistent performance drops
when excluded. Encoded as cyclical sine/cosine features, date allowed models to
detect seasonal mismatches.

2. Altitude: Second most important, particularly for distinguishing ecologically im-
plausible elevations.

3. Coordinates (X/Y): Provided spatial context essential for detecting geographical
outliers.
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4. Land Cover: Less critical than other features, but still provided useful habitat-
based information for certain species.

These rankings hold across all models except HDBSCAN, which showed no clear benefit
from any feature configuration, and Isolation Forest, which was adversely affected by
land cover.

Reviewer Perspectives on Feature Utility

The qualitative evaluation provides further insight into the perceived utility of different
feature types. Reviewer R1 particularly valued the Emergent Filter outputs based on
date and altitude plausibility. These features appeared to match their own ecological
intuitions and aligned with the known behavior of many target species.

For land cover, both reviewers expressed concerns about interpretability and resolution.
The fixed 1 km2 buffer used for habitat composition was considered too coarse for linear
habitat users (e.g., White-throated Dipper) and too narrow for wide-ranging species (e.g.,
Black Kite). This aligns with the modest quantitative contribution of land cover features
observed in the model performance.

In contrast, the Grid-Year filter (which integrates date and location) was viewed as
highly valuable and ecologically consistent, indirectly confirming the high importance of
date-related features.

Conclusion

Temporal (date) features and spatial (altitude and coordinate) features are essential com-
ponents for accurate Anomaly Detection. Their removal consistently degrades model
performance. Land cover features provide additional ecological context but are less criti-
cal and may even hinder some models if not configured carefully. These results highlight
the importance of thoughtful feature engineering and suggest that species-specific feature
resolution-especially for land cover-may enhance performance further.
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RQ 5 - Practitioner Preferences

How do professional ornithologists evaluate the usability and reliability of statistical Emer-
gent Filters compared with Machine Learning models for error detection?

This research question explores the human-centered perspective: How do domain ex-
perts perceive the utility, reliability, and transparency of automated Anomaly Detection
methods? Two professional ornithologists (R1 and R2) participated in a structured qual-
itative review of the model and filter outputs. Their feedback offers essential insight into
which approaches align with expert expectations and practical needs.

General Perception of the System

Both reviewers evaluated the Anomaly Detection tool positively. R1 expressed enthusi-
asm, noting they were "pretty excited-the tool already flags many cases we would probably
miss". R2 viewed the tool as "useful" and "time-saving", especially for pre-filtering large
volumes of citizen science data.

These impressions confirm that automated systems can add real value in practice, par-
ticularly when they surface subtle errors that might otherwise go unnoticed.

Filter-Specific Feedback

Each Emergent Filter received distinct comments regarding its strengths and limita-
tions:

Grid-Year Filter (Date + Location) This filter was widely appreciated for its eco-
logical plausibility. Both reviewers confirmed that it reliably detected outliers in seasonal
and spatial distributions. Anomalies like summer records for winter-only species (or vice
versa) were flagged consistently, making this filter one of the most trusted components.
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Altitude Filter The altitude filter was recognized as conceptually valid, but reviewers
raised practical issues. Many false positives occurred when birds were observed from
a distance, and their apparent coordinates (based on observer location) placed them
in an implausible altitude zone. This spatial imprecision diminished trust in the filter’s
output. Both reviewers suggested adopting more flexible or hierarchical altitude windows
to mitigate this issue.

Land Cover Filter The land cover filter generated the most criticism. While effective
in some forest-vs-open land cases, its use of a fixed 1 km buffer was considered ecologically
unrealistic for many species. For wide-ranging birds like Black Kite, the buffer was too
narrow, while for habitat specialists like White-throated Dipper, it was too coarse. Both
reviewers recommended species-specific tuning of the land cover resolution.

Model Output and Interpretability

Only the DBSCAN model was shown during the qualitative review to reduce reviewer
workload and because it was the most readily available tuned model at the time.

R1 and R2 both found the models binary output simple and helpful. It provided an
immediate impression of model confidence and aligned well with their own judgments in
most cases. While the lack of explanation was noted as a potential limitation, the clarity
of the output was appreciated.

Preference for Output Format

The reviewers articulated different but complementary preferences:

• R1 appreciated having multiple filters and a model side-by-side. When all flagged
a sighting, the decision was clear.

• R2 favored the simplicity of binary alerts (as in the Model output) but still valued
the transparency of the filters.

Both expressed interest in a hybrid interface: a simple alert (e.g., "Potential Outlier")
supplemented with detailed breakdowns of the contributing filters or feature deviations.
This structure would enhance trust while maintaining usability.
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Influence of Model Predictions

R1 made an effort to ignore the automated predictions initially, then compare their own
decisions afterward. They reported a high degree of agreement with the models and
filters.

R2 acknowledged that the predictions influenced their decisions but found this helpful
rather than misleading.

Both concluded that the predictions added confidence and improved consistency in
decision-making, especially for borderline cases.

Recommendations and Interface Improvements

The reviewers proposed several specific improvements:

• Add aerial basemaps (e.g., SwissTopo) for improved terrain interpretation.

• Visualize sighting uncertainty (e.g., 1 km grid vs. exact point).

• Reduce vertical scrolling and condense the interface onto a single page.

• Include a progress bar or counter to show remaining records.

These suggestions focus on improving ecological context and usability without altering
the underlying detection logic.

Redefining “True Outlier”

R1 proposed broadening the ground-truth definition of outliers. In addition to the syn-
thetically introduced errors, they suggested incorporating manually labeled cases flagged
by experts as implausible. This expanded label set would reflect real-world plausibility
more accurately than synthetic error types alone.
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Conclusion

The qualitative evaluation demonstrates that professional ornithologists find both statis-
tical filters and Machine Learning models useful, provided their outputs are interpretable
and ecologically grounded. Among the filters, the Grid-Year filter earned the highest
trust. The model (in this case DBSCAN) proved effective as a binary flagging tool.
Hybrid systems, combining clear alerts with transparent breakdowns, are preferred. Us-
ability concerns center around interface layout and ecological realism (e.g., buffer sizes).
Integrating such expert feedback into future system iterations can enhance both accep-
tance and effectiveness in operational contexts.
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The results of this thesis demonstrate that automated Outlier Detection methods, par-
ticularly unsupervised Machine Learning models, can substantially enhance the identifi-
cation of implausible records in large-scale bird sighting datasets. Both statistical filters
and ML models showed value in different contexts, and expert reviewers found the sys-
tem promising for practical use. Nonetheless, this work represents only an initial step
toward integrating Anomaly Detection into the operational workflows of citizen science
platforms such as ornitho.ch and ornitho.de. This chapter outlines several avenues for fu-
ture research and development, aiming to further improve accuracy, usability, scalability,
and real-world integration.

8.1 Integration into Operational Platforms

One of the most immediate next steps is the deployment of the developed system within
an actual data review environment. Currently, the framework operates as an external
tool, but integration into platforms like ornitho.ch would allow real-time application of
filters and ML predictions. Reviewers could benefit from automated plausibility flags to
prioritize their work, especially for the increasing number of daily reports. Integration
would also facilitate the collection of expert decisions, enabling continuous improvement
of the models through feedback loops.

Such integration must be accompanied by a robust UI/UX design process. As suggested
by the reviewers, the existing Gradio-based interface could be enhanced with interactive
visualizations, compact layouts, and context-aware basemaps. A web-based widget em-
bedded in the reviewer portal could display ML and filter predictions alongside traditional
sighting metadata.
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8.2 Supervised Learning and Label Expansion

While this thesis focused on unsupervised approaches due to the lack of extensive labeled
data, Supervised Learning remains a promising direction for future work. With a large
enough dataset of confirmed false sightings - either manually annotated or derived from
reviewer logs - supervised models could be trained to capture more subtle patterns and
learn species-specific error distributions.

To support this, future initiatives should aim to systematically label historical outliers
and true positives. Importantly, as proposed by Reviewer R1, expanding the gold stan-
dard to include expert-detected errors - not just synthetically manipulated records -
would significantly improve label diversity and realism.

8.3 Species-specific Feature Engineering

Both reviewers noted that the effectiveness of filters - particularly those involving land
cover - depends heavily on species-specific ecology. This was also confirmed by quanti-
tative evaluation. Future versions of the framework should adapt features dynamically
based on species traits. For instance:

• Adaptive habitat buffers: Instead of using a fixed 1 km buffer for all species,
buffer sizes could reflect typical home range, foraging radius, or habitat breadth.

• Sighting confidence estimation: Differentiating between exact locations and
sightings reported from a distance (e.g., over water bodies or valleys) would allow
more accurate spatial plausibility checks. This could be inferred from metadata
(e.g., optical devices used, observer comments) or modelled probabilistically.

• Taxon-specific thresholds: Rather than applying uniform decision thresholds
across all species, models and filters could adapt sensitivity based on ecological
variance or historical error rates.

This level of refinement requires additional species-level metadata (e.g., mobility, niche
width), which could be extracted from established ecological databases or inferred via
clustering techniques.
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8.4 Scaling to Additional Species

The current implementation focuses on 27 ornithologist-selected species. To generalize
the system for operational use, the coverage must be significantly expanded. A scalable
training pipeline should be developed to automatically generate filters and train ML
models for hundreds of species. This could be done incrementally, prioritizing taxa with
high observation frequency or known reporting biases.

Particular attention should be given to rare species, whose low observation frequency
may limit model generalization. Semi-supervised or transfer learning approaches could
be investigated to support learning in data-scarce regimes.

8.5 Incorporating Reviewer Metadata and Trust Scores

Currently, all records are treated equally in terms of their assumed reliability. However,
citizen science platforms often collect reviewer metadata-such as user ID, experience level,
or historical accuracy. Future models could integrate this information as a feature or as
a weighting factor:

• Reviewer credibility scores: If a reviewer has consistently produced high-quality
data (e.g., few manual corrections required), their sightings could be down-weighted
in Anomaly Detection or prioritized differently.

• Model calibration: These scores could also be used to calibrate the output prob-
ability of ML models, shifting thresholds based on expected trustworthiness.

This approach would allow more nuanced filtering strategies, enabling the system to
adapt based on both the content and source of the sighting. However, for this approach,
data privacy must be ensured consistently.

8.6 Feature Innovation and Temporal Dynamics

Additional features could further enhance detection capabilities. Potential extensions
include:
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• Weather and climate features: Integrating high-resolution climate data (e.g.,
temperature anomalies, wind conditions) could improve models’ ability to distin-
guish between true shifts (e.g., early migration due to warm weather) and implau-
sible sightings.

• Observer history features: Anonymized summaries of each observer’s past re-
ports (e.g., spatial range, frequency, taxonomic focus) may provide useful context
for sighting plausibility.

• Temporal change features: Inspired by Siebold (2025), who used Bayesian
Change Point Detection to analyze shifts in citizen science bird sighting data, future
work could integrate temporal change point detection to inform model retraining
intervals or flag sudden shifts that may indicate either ecological changes or ob-
server behavior shifts.

Such features may also support longitudinal analysis of anomaly rates, offering insights
into trends in observer behavior, habitat use, or climate-driven range shifts.

8.7 Human-Centered Design and Gamification

To maximize reviewer engagement and encourage consistent participation, gamification
elements could be incorporated into the reviewing interface. Based on reviewer feedback,
possible features include:

• Leaderboards: Displaying the number of reviewed entries per user could foster
friendly competition.

• Achievement badges: Awarding badges for milestone completions (e.g., “100
sightings reviewed”) could increase motivation.

• Progress tracking: Showing progress bars or review summaries may help review-
ers plan their workload and feel more rewarded.

• Instant feedback: When possible, providing post-review insights (e.g., "Your
review matched the expert consensus") could build trust and provide educational
value.
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Such enhancements are particularly relevant given that manual data validation is often
seen as tedious. Increasing enjoyment and transparency could boost review volume and
consistency.

8.8 Toward Hybrid Decision Systems

Finally, this thesis supports the development of hybrid systems that integrate multiple
detection layers: ML models, ecological filters, and expert judgment. The most promising
architecture may involve:

• Model ensembles: Aggregating predictions from multiple ML algorithms (e.g.,
KNN, AutoEncoder, DBSCAN) can reduce variance and increase robustness.

• Rule-based overrides: Allowing critical ecological rules (e.g., no winter presence
in alpine zones) to override or flag ML decisions.

• Interactive dashboards: Presenting both aggregated risk scores and individual
filter/method outputs to support transparent decision-making.

Such systems can ensure high precision, preserve expert trust, and adapt to different
reviewer profiles or taxonomic groups.

8.9 Conclusion

This thesis lays the groundwork for automated, interpretable, and ecologically grounded
Anomaly Detection in bird sighting data. However, realizing its full potential requires
significant next steps: operational integration, feature refinement, and species-specific
customization. By extending the framework in these directions-and incorporating real-
world usage feedback-future systems can substantially improve the reliability, scalability,
and usability of biodiversity monitoring tools in the age of citizen science.
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A Appendix

A.1 Applied Tools

Table A.1 lists the tools and resources used for this Master thesis.

Table A.1: Used Tools and Resources
Tool Usage
LATEX Typesetting and layout tool used for the creation

of this document
Corine Land Cover dataset (CLC) Creation of the Land-Cover-feature
Digital Elevation Model (EU-DEM) Creation of the Altitude-feature
Gradio Python package for building the presented review interface
ChatGPT 4o Translation tasks for the creation of this document
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