MBURG

BACHELOR THESIS
Viviam Clara Ribeiro Guimaraes

Modeling and Predicting
Routes of Internally Displaced
Persons: An Agent-Based
Approach Using the MARS
Framework in the Context of
the Syrian Refugee Crisis

Faculty of Engineering and Computer Science
Department Computer Science

HOCHSCHULE FUR ANGEWANDTE
WISSENSCHAFTEN HAMBURG

Hamburg University of Applied Sciences

Viviam Clara Ribeiro Guimaraes

Modeling and Predicting Routes of Internally
Displaced Persons: An Agent-Based Approach
Using the MARS Framework in the Context of the
Syrian Refugee Crisis

Bachelor thesis submitted for examination in Bachelor’s degree

in the study course Bachelor of Science Applied Computer Science
at the Department Computer Science

at the Faculty of Engineering and Computer Science

at University of Applied Science Hamburg

Supervisor: Prof. Dr. Thomas Clemen
Supervisor: Prof. Dr. Stefan Sarstedt

Submitted on: 20 October 2023

Viviam Clara Ribeiro Guimaraes

Title of Thesis

Modeling and Predicting Routes of Internally Displaced Persons: An Agent-Based Ap-
proach Using the MARS Framework in the Context of the Syrian Refugee Crisis

Keywords

Agent-Based Modeling, Internal Displacement, Computational Simulation, Predictive

Modeling, Forced Migration

Abstract

This thesis investigates the application of an agent-based model (ABM) to predict the
distribution of Syrian internally displaced persons (IDPs) and assess its utility for hu-
manitarian resource allocation. Leveraging the MARS framework, the study adapts an
existing ABM designed for Syrian refugee distribution in Turkey to simulate the move-
ment of internally displaced persons within Syria. The research highlights the model’s
potential for informing resource allocation decisions at the statewide level, accurately
identifying governorates with the highest IDP populations. However, limitations in pre-
dicting finer-grained administrative levels and migration routes are identified, emphasiz-
ing the need for further research and enhancements. Despite these challenges, this work
paves the way for future research to improve the model’s accuracy and usefulness for

humanitarian actors in active conflict zones.

Kurzzusammenfassung

Diese Arbeit untersucht die Anwendung eines agentenbasierten Modells (ABM) zur Vorher-
sage der Verteilung syrischer Binnenvertriebener und deren Eignung fiir die Zuweisung
humanitirer Ressourcen. Unter Verwendung des MARS-Frameworks wurde ein vorhan-
denes ABM angepasst, um die Bewegung der Binnenvertriebenen innerhalb Syriens zu
simulieren. Die Studie betont das Potenzial des Modells, fundierte Entscheidungen
zur Ressourcenzuweisung auf Landesebene zu unterstiitzen und Gouvernements mit der
hochsten IDP-Bevilkerung genau zu identifizieren. Es gibt jedoch Einschrankungen bei
der Vorhersage auf feineren Verwaltungsebenen und bei Migrationsrouten, was weitere

Forschung und Verbesserungen erfordert.

iii

Contents

List of Figures vii
List of Tables ix
1 Introduction 1
1.1 Goal 2
1.2 Structure Outline 2

2 Sociological Background 3
2.1 Syrian Refugee Crisis 3
2.2 Behavioral Theory 3

3 Materials And Methods 8
3.1 Reference Model Description. 8
3.1.1 Location Nodes 8

3.1.2 Refugee Agents 9

3.1.3 Update Behavior 11

3.14 Imput Data 11

3.1.5 Calibration 12

3.2 Agent-based Modelling o 12
3.3 The MARS Framework, 13
3.4 Data Preparation and Analysis Tool: Jupyter Notebook 15

4 Requirements 16
4.1 Replication Requirements 0oL 17
4.1.1 Migrant Agent Requirements 17

4.1.2 Locations Requirements 18

4.1.3 Model Requirements 18

4.2 IDP Simulation Requirements 20

v

Contents

5 Conceptual Model
6 Design For Implementation in MARS
6.1 Migrant Component
6.2 Map
6.3 Relationship Between The Components
6.4 Data Integration L
6.5 Model Output
6.6 Model Configuration
6.6.1 Simulation Mode Lo o
7 Implementation Details
7.1 Migrant Component
7.1.1 MigrantLayer Implementation
7.1.2 MigrantAgent Implementation
7.2 Map Component
7.2.1 Camps and Conflicts 0.
7.2.2 PopulationLayer oL
7.2.3 LocationLayer.o
7.2.4 Location Vector Feature
8 Data Sourcing and Preparation
8.1 DataSourcing
8.2 Data Preparation o
9 Verification And Validation
9.1 Verification
9.2 Validation
9.2.1 Validation of Syrian Refugees in Turkey Simulation
9.2.2 Validation of IDPs’ Simulation
10 Scenarios
10.1 Scenario Description
10.1.1 Scenario 1: Administrative Level 1
10.1.2 Scenario 2: Administrative Level 2
10.1.3 Scenario 3: Administrative Level 3
10.1.4 Scenario 4: Routes Prediction

22

27
27
29
31
32
34
34
36

37
37
37
38
40
40
42
42
44

47
47
48

49
49
51
52
55

59
59
59
60
60
60

10.2 Results
10.2.1 Results of Scenario 1
10.2.2 Results of Scenario 2
10.2.3 Results of Scenario 3
10.2.4 Results of Scenario 4

11 Discussion
11.1 Analysis of Model Utility for Humanitarian Actors
11.2 Sources of Error in the Model

12 Conclusion and Next Steps

Bibliography
Declaration of Authorship

72
72
73

74

76

vi

List of Figures

4.1

5.1
5.2
5.3

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Mind map of model requirements 16
Diagram showing the conceptual model of the domain 24
Diagram showing the omitted DecisionToLeaveLaw 25

Diagram showing the conceptual model including difference in the domain

of modeling IDPs 26
Layers in the migrant component 27
Migrant agent in the migrant component 28
Connection of layer types and agent type to the MARS Framework 28
Layers in the map component 29
Vector Features in the map component 30

Connection of layer types and vector feature types to the MARS Framework 31
Relationship between the migrant and the map components 32
Required data sets integrated through MARS layers 33

Class diagram showing the implementation of the layer and agent classes
of the migrant component oL 38

Sequence diagram showing the interactions between the migrant agent and

the map locations in the Tick method 39
Activity diagram showing the decision logic of agent activation 40
Activity diagram showing the algorithm of location assessment 41

Class diagram showing the implementation of the layer and vector feature
classes of the map component 42
Activity diagram showing the behavior of the LocationLayer before every
simulation step 43
Sequence diagram showing the method calls made to update the social

networks of agents after every step 45

vii

List of Figures

9.1 Diagram showing the initialization of the simulation environment for testing 50

9.2
9.3

10.1

10.2

10.3

10.4

10.5
10.6

10.7

10.8

Output of the reference model after 40 days
Output of the replicated model after 40 days

Map of predicted IDP population density compared against population
density from real-world estimations in March 2017
Bar chart of predicted distribution of IDPs across governorates compared
against real-world estimations in March 2017
Map of predicted IDP population density compared against population
density from real-world estimations in January 2017
Bar chart of predicted distribution of IDPs across governorates compared
against real-world estimations in January 2017
Initial distribution of IDP population for March predictions
Map of predicted IDP population density per administrative level 2 com-
pared against real-world estimations in March 2017
Map of predicted IDP population density per administrative level 3 com-
pared against real-world estimations in March 2017
Map of predicted IDP population density per administrative level 2 com-

pared against real-world estimations in March 2017

54

viii

List of Tables

2.1

3.1

6.1
6.2
6.3
6.4

9.1
9.2

Table of types of ABMs of migration. 5
Table of agents’ key attributes. 13
Table of required fields of data sources. 33
Table of model output files. 0L 34
Table of parameter types of the layer configuration. 35
Table of parameter types of the agent configuration. 35
Table of parameter values for the Turkey simulation run. 53
Table of calibration experiments. 58

1X

1 Introduction

In a world where conflicts and crises continue to displace countless individuals from their
homes, the accurate assessment of affected populations is more critical than ever before.
Among these displaced populations, Internally Displaced Persons (IDPs) represent a par-
ticularly vulnerable group, as their size and locations often remain obscure, hindering the
efficient provision of essential humanitarian assistance (Doocy et al., 2015). A model that
could accurately predict flight routes and destinations based on real-time conflict events
would improve the targeting and efficiency of relief and assistance responses (Harrison,
2016).

Extensive research has been conducted on forced migration, with various methodolo-
gies employed to model and predict the movement of displaced populations with sta-
tistical modeling being the most common one (Hébert et al., 2018), (Sokolowski et al.,
2014). Prior efforts have predominantly focused on modeling the displacement of refugees
rather than IDPs, primarily due to the scarcity of systematic data available for the latter
(Suleimenova et al., 2017). However, existing models face challenges which hinders their

applicability.

Notable works in the field of forced migration research include Hébert and Perez’s agent-
based model for Syrian refugee movement (Hébert et al., 2018) and Sokowinski and
Banks’ model for displacement in Aleppo (Sokolowski et al., 2014), both of which overes-
timate refugee numbers. Harrison’s research which explores linear regression models for
discovering internal displacement influencers in Syria (Harrison, 2016). Gulden, Harri-
son, and Crooks’ hybrid spatial interaction agent-based model which seeks to understand
displacement dynamics in East Africa but doesn’t produce valid results (Gulden et al.,
2011). Giingor, Giinnec and Salman’s agent-based model for the prediction of migration
paths in Syria which could not be validated (Giingor et al., 2022). Suleimenova and Bell’s
generalized simulation approach with the FLEE model (Suleimenova et al., 2017), the
validity and practicability of which has been criticised (Richey, 2020). Richey’s pioneer-

ing work on scalable agent-based modeling, which is the first empirically validated model

1 Introduction

of forced migration to include the influence of social networks providing a promising
foundation for further research (Richey, 2020).

1.1 Goal

The overarching goal of this thesis is twofold: to redesign the existing agent-based model
as outlined in Richey’s work (Richey, 2020) using the MARS framework. The second
goal is to extend the MARS ABM to encompass the simulation of Internally Displaced
Persons (IDPs) emerging from the Syrian Refugee Crisis. The aim is to assess whether
the modified model, inclusive of IDPs holds the potential to be useful for humanitarian
organizations in their resource distribution planning. Should the model’s predictive accu-
racy fall short, the main sources of error will be identified, contributing valuable insights

to enhance the predictive capabilities of future research.

1.2 Structure Outline

To achieve the goal described in the last section, the thesis will progress through vari-
ous phases, including sociological background research, the presentation of methods and
materials, defining requirements, conceptual model development, adaptation design for
the MARS Framework, implementation details, verification and validation procedures,
predictive scenarios description, results evaluation, a comprehensive discussion of find-
ings, and ultimately, a conclusion outlining the model’s utility and potential next steps

for research in this domain.

2 Sociological Background

As mentioned in the previous chapter the model aims to simulate the movement of
Syrian refugees and IDPs emerging from the Syrian refugee crisis. This chapter offers a
concise overview of key statistics and information pertaining to this crisis. Furthermore
different types of decision making mechanisms in agent-based models of forced migration

are analysed.

2.1 Syrian Refugee Crisis

The Syrian Refugee Crisis, ongoing for more than a decade, is the world’s largest refugee
crisis. Since 2011, over 14 million Syrians have been forced to flee their homes in search
of safety (UNHCR, 2023). Those who remain within Syria’s borders, without crossing
international boundaries, are referred to as Internally Displaced Persons (IDPs) (Thibos,
2014). Alarmingly, more than 6.8 million Syrians are internally displaced, with ap-
proximately 70 percent of the population requiring humanitarian assistance. Moreover,
approximately 5.5 million Syrian refugees reside in the neighboring countries of Turkey,
Lebanon, Jordan, Iraq, and Egypt (UNHCR, 2023). This crisis has placed significant
strain on both Syria and its neighboring nations, necessitating a deeper understanding

of the factors influencing displacement for resource allocation.

2.2 Behavioral Theory

A critical part of agent-based modelling is the description of the mechanisms of deci-
sion making and social interactions of agents (Klabunde, Willekens, 2016). This section
provides an overview of the decision-making theories commonly employed in ABMs of

migration and examines their appropriateness for modeling internal displacement.

2 Sociological Background

Decision Making in Agent-Based Models Klabunde and Willekens emphasize the
critical role of decision-making mechanisms in ABMs, ranging from simple to complex
processes. These mechanisms typically involve agents evaluating their options, translat-
ing these evaluations into decisions, and often incorporating random elements to deter-
mine action. Empirical data can also play a crucial role in parameter estimation and
model validation (Klabunde, Willekens, 2016).

According to Klabunde and Willekens, ABMs of migration can be categorized into six

types based on the theories of decision making employed. These are shown in table 2.1.

2 Sociological Background

Model Lo
Characteristics | Pros Cons
Type
Simple rules pro- . .
L. .)) . Lacking empirical
Minimalist || ducing macroout- | Simplicity .
evidence
comes
Alternative with
Expected the highest ex- | Has shown accu- | Assumes rational
Utility pected utility is | rate predictions behavior
chosen
) High complexity
Rules derived | Demonstrated
Psycho- i . due to the nu-
. from social psy- | empirical rele- .
Social merous influenc-
chology vance)
ing factors
L. Uses heuristics to)]]]
Heuristics-) . o Simple; allows for | Oversimplification
simplify decision oo .
Based) social influence of decision theory
making
Decision Decision theory
Theory combined with | Benefits from
with Em- || direct observa- | decision theory | Lacking generaliz-
pirical tion. Coefficients | and empirical | ability
Calibra- calibrated using | accuracy
tion empirical data
Direct Lacking gen-
Observa-) o eralizability;
. Rules estimated | Empirical accu-]
tion and complexity; nu-
. from data racy)
Rule Esti- merous possible
mation factors to include

Table 2.1: Table of types of ABMs of migration.

2 Sociological Background

Decision-Making Logic in ABMs of Forced Migration Several ABMs of forced
migration have been developed, each employing distinct decision-making theories. Here

are some examples and their outcomes:

1. Hébert et al. (2018): They utilized the theory of planned behavior from social
psychology which resulted in a complex decision-making process, overestimating
the number of refugees. This theory may not be suitable for forced migration
due to its long-term planning assumptions and the limited applicability of rational
behavior (Richey, 2020).

2. Giingor et al. (2022): Their model relied on minimal decision theory, with the
choice to flee primarily based on violence tolerance and destination selection focused
on proximity. However, its validity is questionable, as it relies on a self-fulfilling

prophecy validation process.

3. Sokolowski et al. (2014): This model was based on a decision theory informed by
the agent zero construct proposed by Epstein (Epstein, 2014) which can be cate-
gorized as a psychology-based theory. However, it overestimated refugee numbers,

suggesting potential shortcomings in this approach.

4. Suleimenova et al. (2017): They combined utility maximization theory with empir-
ical data for parameter calibration. This approach is criticized because it assumes
rational behavior which is not always the case in a forced migration environment
(Richey, 2020). While effective to some extent, criticism about its validity remain
(Richey, 2020).

5. Richey (2020): Richey’s model employed utility maximization theory while in-
corporating social network influences, making it more suitable for explaining the
behavior of forced migrants since sub-optimal destinations can be chosen. How-
ever, there is still room for improvement because agents congregate near the border
after a while. This short-coming shouldn’t affect the simulation of IDPs because
border crossings aren’t simulated. Since Richey’s model’s decision making process
includes a decision theory as well as empirical calibration (model type 5) it needs
to be re-calibrated to fit the behavior of IDPs in Syria.

Behavior of IDPs in Syria Research into the behavior of IDPs in Syria can guide the
changes necessary to apply Richey’s decision making process to the simulation of IDPs’

movement. It reveals that conflict-prone areas experience higher rates of displacement.

2 Sociological Background

But this is not always the case when analysing at a governorate level since people flee
to safer districts located within high-conflict governorates (Doocy et al., 2015). IDPs
often move multiple times due to changing battle lines. The majority of IDPs either live
with family and friends or rent private accommodations. Others squat in vacant places,
or reside in IDP camps (Thibos, 2014). Notably, IDPs tend to congregate in areas with

robust infrastructure (Harrison, 2016).

3 Materials And Methods

In the previous chapter, sociological background information pivotal for later defining
the model requirements were gathered. In this chapter, key concepts of the reference
model which will also play an important role in the requirements analysis are described.

Finally, the chosen methods and tools for realising this project are outlined.

3.1 Reference Model Description

The reference model developed by Richey (Richey, 2020) to be adapted is an agent-based
model intended to simulate the migration flow of refugees in a host country over a period
of 30-90 days. The simulation environment is made up of two components: the location
nodes and the refugee agents. This section describes the core concepts of Richey’s model

design in detail. All the information in this section is extracted from Richey’s paper.

3.1.1 Location Nodes

The location nodes are a part of a large, undirected geographical network which is created
using geographical centroids of the administrative units of the host country in the desired
granularity. In the case of Turkey, the administrative level 2 was chosen resulting in 929
nodes. Each node is connected bidirectionally to every other node in the same country

with which it shares a geographic border.

Anchor Location The model includes an anchor location which is a geographical
location representing a general direction of refugee movement. In the case of Syrian
refugees, a lot of them intend to leave Turkey for Europe so the anchor location should
be the coordinates of a city in Europe. The distance from each location node to the

anchor location is calculated, represented by the anchor location score of a node.

3 Materials And Methods

Location Node Information FEach node contains information on the number of
refugees at the corresponding location, the anchor location score, the number of con-
flicts taking place at the location in the simulated time period and the number of camps
at that location. A node can also be marked as being a border crossing point from which

new refugees will enter the country and with it, the simulation.

Node Score Every location node is assigned a score value which is calculated in each

simulation time step. The equation for the score calculation is as follows:

E=((pxw)+ (I xw)+ (cxws)+ (dx(—1) x wy) (3.1)

The meaning of the variables in the equation is as follows:

p: normalized refugee population at node
I: normalized anchor location score

c: normalized number of camps

d: normalized number of conflicts

w(1-4): weight of each parameter

3.1.2 Refugee Agents

The refugee agents are instances of the refugee class. They are initialized with a reference
to their initial node location and two empty lists for friends and kins. These lists are
then initialized by creating random social links between agents. After initialization, the

lists contain references to the friends and kins of the agents.

Agent Activation In every simulation time step each agent makes the decision to
stay at their current location or to leave it. The decision is made by drawing from a
probability distribution. The probability of leaving or staying depends on whether their
current location hosts a conflict, a camp or none of the above. For each of those cases

there is a probability parameter.

3 Materials And Methods

Choosing the next destination If an agent has been activated, the next step is to
choose their next destination. To do that the agent inspects the locations adjacent to
their current location and assigns a desirability score to each candidate location. Finally
the node with the highest desirability score is chosen. The equation for the desirability

score of a node is as follows:

N=kxws+ fxws+FE (3.2)

The meaning of the variables in the equation is as follows:

k: normalized number of kins present at the inspected node
f: normalized number of friends present at the inspected node
E: node score

w(5-6): weight of each parameter

Since two agents at the same origin location have different friendship and kinship ties,

they can come to different desirability scores for the same location.

Interactions Agents interact with the environment by accessing node scores of neigh-
boring nodes. Agents interact with each other by knowing the geographic location of all

their friends and kins.

Moving Agents essentially teleport to the location made, which is possible by the
granularity of the simulation environment. The granularity of the simulation environment

results in transit distances of no more than a day.

Agent Spawning Agents are spawned at the beginning of the simulation according to
the existing refugee population at each administrative unit of the host country. Then new
agents are spawned at border crossing nodes. The number of agents spawned at each
border crossing point is determined by a parameter, the value of which is established

through calibration.

10

3 Materials And Methods

3.1.3 Update Behavior

The node scores and the social networks of agents are updated after every simulation

time step.

Node Score Update The node score is recalculated after every simulation time step
because its value depends on the number of refugees present at the location and this

number changes after each time step as agents leave and enter a location.

Social Network Update Richey makes the assumption that new friendships are
formed after having stayed at the same camp. Hence new friendship ties are randomly

added between agents at the same camp node.

3.1.4 Input Data

The model incorporates the following data sources:

1. Shapefile with locations of the host country at the desired administrative level used

to build geographical network of the simulation.

2. Shapefile of refugee population by province (administrative level 1 is mostly the
only data available). If the simulation is to be run with locations of a higher

granularity the population numbers are re-projected.

3. Shapefile of refugee camp coordinates data. Used to extract the number of camps

at a location.

4. CSV file of conflict events data including conflict coordinates. Used to extract the

number of conflicts at a location.

The data is processed with a Python script which extracts the needed information for each
location node from the various data sources and joins it all in one data file. The produced
data file is then accessed to build a graph. Every row of the data file is used to create a

node in the graph. The graph forms the geographical network of the simulation.

11

3 Materials And Methods

3.1.5 Calibration

The probability parameters needed for agent activation, the weights used in the decision
making, the initial number range of kins and friends of each agent, the number range of
new friendship ties to be formed after every simulation step and the number of agents to
be spawned at each border crossing are all calibrated keeping with Gilbert and Troitzsch’s
methodology (Gilbert, Troitzsch, 2005).

3.2 Agent-based Modelling

Agent-Based Models (ABM) stand as a fitting methodology for the task at hand - pre-
dicting the movements of forced migrants. This section serves to illuminate the reasons
behind the selection of ABM as the preferred modeling technique, and providing an

understanding of its fundamental principles.

Why Agent-Based Modeling for Forced Migration?

1. Modeling Social Interaction and Networks ABM distinguishes itself by al-
lowing for the explicit modeling of social interactions and the resultant social networks
(Klabunde, Willekens, 2016). Given that migration decisions are influenced by interper-
sonal connections, this capability is essential for an accurate representation of real-world

migration dynamics.

2. Individual Decision-Making Migration decisions are inherently personal. ABM
excels at capturing this individual decision-making process within a simulation environ-
ment, offering the flexibility to observe how these autonomous choices drive the evolution

of the system over time (Richey, 2020).

3. Heterogeneous Decision-Making In the realm of refugee migration, the decision-
making process involves a diverse array of individuals with unique characteristics and
considerations. ABM excels at modeling such heterogeneity, allowing individuals repre-
sented by agents to interact based on straightforward rules, leading to the emergence of

complex behaviors and patterns (Hébert et al., 2018).

12

3 Materials And Methods

Understanding Agent-Based Modeling At the core of ABM lies the concept of
software agents, one of the definitions of which is that an agent is an autonomous system
situated within an environment. The autonomy of agents grants them the ability to make

individual decisions, setting them apart from objects (Padgham, 2004).

Key attributes of software agents as defined by Padgham include:

Attribute Description
Reactivity Can respond to changes in their environment
. Can pursue their goals even when their actions
Persistence .
fail
Flexibility Can concurrently pursue multiple goals
Interactivity Can interact with other agents
Rationality Don’t pursue contradictory goals

Table 3.1: Table of agents’ key attributes.

Critically, the environment in which agents operate is dynamic and unpredictable. The
environment may change while agents are in the process of achieving their goals, and
agents cannot foresee future environmental states. Agents gather information from their
environment to inform their decision-making, and their subsequent actions influence the

environment itself (Padgham, 2004).

3.3 The MARS Framework

This section provides an insightful overview of the MARS Framework, an integral com-
ponent of this study’s methodology. Developed by the MARS Group, an academic re-
search project at the Hamburg University of Applied Sciences, the MARS Framework is
a MIT-licensed software which provides functionalities for implementing and simulating
ABMs (MARS-Group, 2023). The MARS System is written in C Sharp (C#), an ob-
ject oriented programming language. Central to its design is the hierarchical inheritance
structure for the agent type and various environment types, the implementation of which

can be extended by the user of the framework.

13

3 Materials And Methods

The MARS Framework has become an essential tool in contemporary research, with
applications spanning various domains. In smart city planning, it supports large-scale
traffic simulations, enabling a deeper understanding of urban mobility (Clemen et al.,
2021a).

In conservation areas, a MARS model has been developed to enhance decision support
for Kruger National Park’s management activities (Clemen et al., 2021b). Moreover,
the MARS Framework’s role extends to providing Modeling and Simulation as a Service
(MSaaS). It enables distributed and scalable simulations (Hiining et al., 2016) making it
an ideal choice for this work, since it aligns perfectly with the reference model by Richey
which is designed to be scalable. However, at the time of writing, distributed simulations

cannot be run because the MARS cluster is currently not available for usage.

A typical ABM written in MARS features three key concepts. These are:

Agents In MARS, agents take center stage, with each instance of an agent type ex-
ecuted as an independent thread. This concurrent execution of behavior routines by
multiple agents allows them to simultaneously interact with and influence both their
environment and fellow agents. A MARS agent is characterized by a set of properties
encompassing its state, knowledge, and memories. Notably, agents undergo an initializa-
tion routine executed once at the start of the simulation, followed by a behavior routine

situated within the tick method, which executes during each simulation step.

Entity Entities, in the context of MARS, refer to passive objects that agents can utilize

as resources.

Layers A layer is a section of a MARS model’s environment. It usually encompasses
objects and /or information of the environment that belong to the same class or category.
In most cases, layers provide information for agents to interact with. Depending on the
model, a layer can be spatially referenced. Such layer types can integrate geodata that
enrich a model with real-world georeferenced information. Layers can also be without
spatial reference. In that case, their functions tend to be administrative: spawning agents
or holding resources for agents during a simulation. Notably, MARS accommodates
active layers, which possess behavior routines executed before, during, and after each

simulation step. These routines are encapsulated within the layer’s pretick, tick, and

14

3 Materials And Methods

postick methods. Importantly, all input data of a simulation is integrated into it through
layers. The data types that can handled by MARS are: CSV, ASC, Shapefile and
GEOJSON (MARS-Group, 2023).

3.4 Data Preparation and Analysis Tool: Jupyter
Notebook

In this section, we introduce Jupyter Notebook, a potent tool at the heart of the data
preparation and analysis endeavors. Jupyter Notebook is an open-source project under
the umbrella of Project Jupyter, offering a versatile platform that empowers interactive
data science and scientific computing across diverse programming languages (Project
Jupyter, 2023). It allows developers to visualize data sets and test code blocks separately,
leading to more flexibility while programming and analysing. Jupyter Notebook is also

very open as it facilitates the export to a wide array of data sources (Rauch, 2022).

Within the scope of this work, Jupyter Notebook assumed a central role in several crucial
aspects, such as: data cleaning, model output analysis and prediction error calculation.
The IPython kernel of the Jupyter Notebook with python modules such as Pandas and
Geopandas were used to prepare the data sources used in the model construction and

validation as well as to visualize the model outputs using maps and graphs.

15

4 Requirements

With the core functionalities of the reference model carefully laid out and the sociological
backdrop illuminated in the preceding chapters, the requirements for the intended model
can be derived from these foundations. Thus this chapter serves as a compass which

guides the next steps of model development.

The mind map shown on Figure 4.1 provides an overview of the model requirements
detailed in this chapter.

Conflict Data

Spawning

Camp Data

8 Input Data

Activate

Refugee Population Data

Migrant & Decision Making

Border Crossing Points

Enter Simulation

Requirements

Friends and Kins

Analysis

Scenarios

Data for Syria Location g

Refugee Population

Simulation Mode 8 IDP Simulation

New Sodial Ties

Dynamic Conflict Calculation

Figure 4.1: Mind map of model requirements

16

4 Requirements

4.1 Replication Requirements

In this section the required functionalities in order to faithfully replicate the reference

model are outlined.

4.1.1 Migrant Agent Requirements

Each migrant agent represents a displaced individual who makes decisions in every sim-

ulation step.

Requirement 1.1: Spawning At the beginning of the simulation the existing refugee
population in each administrative unit is spawned. Then new agents are spawned at

border crossing points in each step.

Requirement 1.2: Activation function At each simulation step the agents decide
whether to move. To do that they calculate an activation function which takes the number

of camps and conflicts at their current location and combine a stochastic component.

Requirement 1.3: Interaction with Locations Agents need to decide where to
go. To do that they must evaluate their surroundings, so they are required to know the
neighboring nodes of their current location and their scores. After the decision is made,

the agents move by changing the current node.

Requirement 1.4: Social network The social network aspect is a pivotal design
point of the target model. It is achieved through the agents having randomly selected
friends, kins and knowledge of their locations. New friendship ties can be added to the

social network.

Requirement 1.5: Decision making To choose their next location, agents assign a
desirability value to each neighboring node by calculating a desirability function using
the equation of the reference model. Then they move to the node with the highest

desirability value.

17

4 Requirements

4.1.2 Locations Requirements

Each location represents an administrative unit of the simulated country. The adminis-

trative level of the units can be freely chosen.

Requirement 2.1: Location Score A score is calculated for each location with the
equation of the reference model. The score is used by agents to evaluate their sur-
roundings. Since the migrant population parameter of the equation changes after every

simulation step, the score is always recalculated afterwards.

Requirement 2.2: Conflicts To calculate the location score, the equation of the
reference model requires the number of conflicts taking place at the location in the time

period of the simulation.

Requirement 2.3: Camps To calculate the location score, the equation of the refer-
ence model requires the number of active camps at the location in the time period of the

simulation.

Requirement 2.4: Existing refugee population To calculate the location score, the
equation of the reference model requires the number of existing refugees at the location
in the beginning of the simulation time period. The refugee population at a location is

updated when agents leave it or when agents enter it.

Requirement 2.5: Forming of New Social Ties A random number of friendship
ties between random agents at the same location are formed if the location contains a

camp.

4.1.3 Model Requirements
Requirement 3.1: Input Data

Real world data is used to create the simulation so the agents can interact with an

environment resembling real life conditions. This way the model outputs can be compared

18

4 Requirements

to real data of the refugee crisis. All data sources must be in accordance with the chosen

simulation time period so real-life conditions can be as close to realistic as possible.

Requirement 3.1.1: Conflict Data Data on conflicts taking place in Turkey that
includes date and coordinates is needed to determine the number of conflicts at a loca-

tion.

Requirement 3.1.2: Refugee Camp Data Data on active refugee camps in Turkey

that includes coordinates is needed to determine the number of camps at a location.

Requirement 3.1.3: Refugee Population Data Data on existing refugee popula-
tion per chosen administrative level is needed to recreate the initial state of the country.
If the data is only available at a higher aggregation level, each administrative unit is
initialized with an equal portion of the total population of the corresponding higher

administrative level unit.

Requirement 3.1.4: Border Crossing Points Names of locations containing border

crossing points in Turkey is needed to spawn refugees at the border.

Requirement 3.1.5: Geodata of Turkey Geodata of administrative divisions of the

simulated country is needed to create the environment the agents navigate.

Requirement 3.2: Entering and Leaving the Simulation Agents enter the sim-

ulation when they cross the border into Turkey but they do not leave the simulation.

Requirement 3.3: Analysis In order to access the simulation results, the model must
produce outputs that can be further processed and analyzed. The required outputs are:
the refugee population per administrative unit a the beginning of the simulation, the
refugee population per administrative unit at the end of the simulation and the routes
taken by agents in the course of the simulation, including the number of agents that

followed each route.

19

4 Requirements

Requirement 3.4: Parameterization of Scenarios In order to simulate different
scenarios it must be possible to change the simulation parameters. These are the simu-
lation time period and length, existing population, camp and conflict data and decision

making parameters.

4.2 IDP Simulation Requirements

In order to use the model to predict the migration routes of IDPs the following require-

ments are added:

Requirement 4.1: Conflict Data in Syria In the simulation of IDPs the agents are
making decisions about where to move inside their home country. So the conflict data

must contain data points on conflict events taking place in Syria.

Requirement 4.2: IDP camps Refugee camps house people who were forced to leave
their home country. Internally Displaced Persons can find shelter in IDP camps. For this

reason, data on IDP camps in Syria is required instead of data on refugee camps.

Requirement 4.3: Existing IDP Population Instead of data on the existing refugee
population in Turkey, data on the existing IDP population per administrative unit in
Syria is required. Since these numbers can be too large for the computational resources
available, the proportions of the distribution of IDPs across administrative units can be
approximated by using data on IDP arrivals per administrative unit in the time period

previous to the simulated time period.

Requirement 4.4: Spawning of IDPs At the beginning of the simulation the sum
of IDP arrivals per administrative unit in the previous month or the previous year is
spawned. Then new agents are spawned at each administrative unit in each time step.
The number of new agents spawned in each step is proportional to the resident population

of the administrative unit and the number of conflicts.

20

4 Requirements

Requirement 4.5: Resident Population Data To fulfill the requirement of spawn-
ing new agents proportionally to the size of the resident population, data on the resident

population per administrative unit of Syria is needed.

Requirement 4.6: Simulation Modes In order to quickly switch between the Turkey
simulation and the Syria simulation, the model must have a "mode" parameter which can

be switched between Syria and Turkey, dictating the model configuration to be loaded.

Requirement 4.7: Dynamic Conflict Number Calculation Since Syria is an
active war zone with evolving battle lines, the number of conflicts in a location should
be calculated daily instead of once at the beginning of the simulation, as is specified by

the reference model.

21

5 Conceptual Model

Having collected the model requirements, the next step in the model development process
is that of conceptual modeling, which is an activity performed in the analysis phase of a
simulation engineering project. Its main purpose is to capture, as faithfully as possible, a
relevant part of the real-world domain under consideration, using a well-defined modeling
language (Guizzardi, Wagner, 2012). Guizzardi and Wagner propose using a version of

UML called Onto-UML, developed previously by Guizzardi (Guizzardi, 2005).

The simulation’s implementation design is then built upon the conceptual model of the
domain leading to a higher overall quality of the simulation software system (Guizzardi,
Wagner, 2012). To create the conceptual model for this work, the tutorial by Guizzardi
and Wagner (Guizzardi, Wagner, 2012) is followed.

Why Onto-UML? Conceptual modeling languages should be highly expressive, allow-
ing for the representation of reality truthfully (Guizzardi, 2005). While Unified Modeling
Language (UML) and Business Process Modeling Notations (BPMN) are well established
notations in the field of software engineering, and are recognized for their expressive-
ness, their original design purpose was software design rather than conceptual modeling
(Specification, 2003). Guizzardi found a number of short-comings of UML for concep-
tual modeling such as ambiguity (e.g. class associations) and incompleteness (meaning
that aspects of the domain can’t be represented by UML constructs) (Guizzardi, 2005).
Consequently, he developed extensions to the language in order to produce a version of
UML class diagrams that is more suitable for conceptual modeling in terms of semantic
clarity (Guizzardi, 2005). The produced version is called Onto-UML.

Conceptual Model Figure 5.1 shows the conceptual model of the domain derived
from the requirements of the previous chapter. The white elements are the objects.

Objects are entities that can be changed by events. Events are represented by the purple

22

5 Conceptual Model

elements and can either be triggered externally or they can be action events, which are

triggered by the objects.

Textual Description Figure 5.1 shows the developed conceptual model of the domain
to be simulated. A migrant is an agent that has a location, kins and friends. A location
has zero or many migrants situated in it. A location also can also have zero or many

camps and conflicts.

A migrant agent is created by an external event of entering through a border crossing

location. They can also make new friends when located at a camp location.

A migrant can decide to leave. A causal law is a sub-process which is triggered by events
and can trigger other events (Guizzardi, Wagner, 2012). The causal law related to the
decision of leaving is omitted for simplicity. When a migrant decides to leave their current
location it triggers the LocationAssessmentLaw which is the sub-process of weighing the

candidate locations against each other and choosing the most desirable one.

When a desirable location has been identified the MoveToChosenLocation action event

is triggered.

Figure 5.2 shows the previously omitted causal law related to the decision to leave.
Migrants are always analysing their current location to make the decision of whether they
should move. This action event triggers the DecideToMoveOrNot sub-process which can

cause the DecisionToLeave event based on the state of the migrant’s current location.

The requirements show that the domain looks slightly different when the migrants are
internally displaced persons. Since they stay within their home country’s borders, there
is no external border crossing event. Instead there is an externally triggered internal

displacement event which creates migrants. This change can be seen on figure 5.3.

23

5 Conceptual Model

- ==gction evenit== .
MakeNewFriends
Camp Locations
N =<gvent== -

* 1 EnterThroughBorder

|

- I ==kind==

<<kind=> Environment Feature

Border Crossings

Agent

iy Iy T

] I_W ‘ 4 ’7_I||

==subkind== ==subkind==

Conflict

<=gubkind=>

Migrant ' | Location

T I_‘ i

|
1
1
«_| <=subkind==

Camp

1
|

<=gction event== *
DecisionToLeave Current Location

1 friggeringEvent

1

1

<=causal law=> 1 *
LocationAssessmentLaw

;

==action event==
MoveToChosenLocation - 1
Chosen Location

Candidate Locations

causedEvent

Figure 5.1: Diagram showing the conceptual model of the domain

5 Conceptual Model

==gclion event==
DecideToMoveOrNot

1

triggeringEvent

)
|

<=causal law==>
DecideToMoveOrNotLaw

E

==gction event==
DecisionToLeave

causedEvent

Figure 5.2: Diagram showing the omitted DecisionToLeaveLaw

25

5 Conceptual Model

«__| <=action event== N
MakeNewFriends
Camp Locations
. <<gyent=> -
* '1 InternalDisplacement
1
1 <<kind=>
==<Kind== ; Environment Feature
Agent Border Crossings
T f T
*
& *, !

==subkind==

1L F_I ||
. ==gubkind=> ==gubkind==

Migrant ‘ ' | Location Conflict
Kin | neighbor T
|_a-_| | I_*Eend l_k_l 1
1
«_| <=subkind==

Camp

1
|

<=gction event== *
DecisionToLeave Current Location

1 ftriggeringEvent

1

1

<=causal law=> 1 *
LocationAssessmentLaw

i

==gction event==
MoveToChosenLocation - 1
Chosen Location

Candidate Locations

causedEvent

Figure 5.3: Diagram showing the conceptual model including difference in the domain of
modeling IDPs

26

6 Design For Implementation in MARS

In this chapter, a design for the implementation in the MARS framework is derived from
the conceptual model shown previously. It is clear from the conceptual model that there
are two main components at the center of the model domain. These are the migrants
and the locations. For this reason, the simulation model’s design is split between these
two components. This chapter also outlines the kinds of outputs the model produces,

the method of model configuration and the simulation mode functionality.

6.1 Migrant Component

In this section, diagrams displaying the layers and agents of the migrant component as
well as their relationships and their connection to the MARS system are shown and

explained.

Migrant

==L ayer==
SchedulerLayer

==L ayer==
MigrantLayer

—1 1—>|
-spawner

Figure 6.1: Layers in the migrant component

27

6 Design For Implementation in MARS

Migrant

==l ayer=>
SchedulerLayer

==L ayer==
MigrantLayer

1—>
-spawner

#H

1«'snvin:lnment

*-agent
v

==Agent=>
MigrantAgent

Figure 6.2: Migrant agent in the migrant component

<<absiract>> <<interface>> <<interface>>
AbstractLayer ISteppedActiveLayer IAgent<MigrantLayer>|
<<lLayer> <<Layer>=> <<Agent=>
MigrantLayer SchedulerLayer MigrantAgent

Figure 6.3: Connection of layer types and agent type to the MARS Framework

Layers The migrant component contains two layer types: the SchedulerLayer and the
MigrantLayer. The MigrantLayer contains the agent spawning logic. The SchedulerLayer

calls the spawning method of the MigrantLayer before each simulation step.

Migrant Agent The MigrantAgent instances’ initialization methods are called by the
MigrantLayer. The MigrantAgent contains the social network functionality and all the
agent behavior logic including the decision to leave or to stay, the assessment of neigh-
boring location and moving. The movement necessitates the access to an environment
provided by the MigrantLayer. The behavior defined in the MigrantAgent is executed in

every simulation time step.

Connection to the MARS system Figure 6.3 shows that the MigrantLayer inherits
from the AbstractLayer class of the MARS Framework providing it only with adminis-

28

6 Design For Implementation in MARS

Map = |

gets camps

-camp 11

<<Layer>=
CampLayer

1
|

<= ayer== L. gets population —] <=l ayer==
LocationLayer ' 1 PopulationLayer
-population

1

<<Layer=»
ConflictLayer

gets conflicts: 1j

-conflict

Figure 6.4: Layers in the map component

trative functionalities to spawn agents and to hold resources for agents (MARS-Group,

2023), in this case it holds the environment the agents move through.

The SchedulerLayer implements the ISteppedActiveLayer interface making it an active
layer which has a behavior routine that can be executed before, during of after each
simulation step. In the case of the SchedulerLayer it calls the spawning function of the

MigrantLayer before every step.

The MigrantAgent implements the [Agent<LayerType> interface of the MARS Frame-
work which allows the agent class to be instanciated by the layer specified in the Layer-
Type parameter, in this case the MigrantLayer. It also facilities the implementation of a

behavior routine which is executed in each simulation time step (MARS-Group, 2023).

6.2 Map

In this section diagrams displaying the layers and vector features of the map component,

as well as their relationships and their connection to the MARS system are explained.

Layers The figure 6.4 shows that the map component contains four layer types: the

CampLayer, the ConflictLayer, the PopulationLayer and the LocationLayer.

29

6 Design For Implementation in MARS

Map

Conflict

=1
<<Layer>> et s <<Vector Feature>>
CamplLayer -init data -initializer
1
= S <] = << ==
Vector F(.eatule > P — s Llayer L, 1| La.yel
Location -initializer -init data LocationLayer . PopulationLayer
-population
1
<<Layer>> . <<Vector Feature>>
ConflictLayer]
y init data initializer
o

-conflicts

Figure 6.5: Vector Features in the map component

The CampLayer is used to integrate geodata of refugee or IDP camps. It makes this data

available to the LocationLayer for further processing.
Likewise the ConflictLayer is used to integrate geodata of conflict events.

The PopulationLayer is used to integrate data on the resident population of Syria per

administrative unit in order to spawn new agents in the course of the simulation.

The LocationLayer is used to integrate geo-data of the simulated country and map its

administrative units, thus modeling the simulation environment.

Vector Features Vector Features are objects mapped by georeferenced layers. They
contain geometries (points, lines, areas) which represent their real-world spatial extent
(MARS-Group, 2023).

Figure 6.5 shows that there are three types of vector features in the map component. Each
instance of a vector feature is instantiated from a data point in the geodata integrated
into its corresponding layer. Each instance is also initialized using the attributes from

the corresponding data row.

Furthermore the Location vector feature accesses the data provided by the CampLayer
and the ConflictLayer to enrich each Location instance with the number of camps and

conflict events inside its borders.

30

6 Design For Implementation in MARS

<<interface=>

<<abstract>> IVectorFeature

VectorLayer<VectorFeatureType>

/ N

<<Layers» <<layerss <<layers> <<Vector Features> <<Vector Features> <<Vector Feature=>
CenflictLayer LocationLayer CampLayer Location Location Camp

<<absiract>>
AbstractLayer

<<Layers>
PopulationLayer

Figure 6.6: Connection of layer types and vector feature types to the MARS Framework

Connection to the MARS system Figure 6.6 shows that all layers of the map com-
ponent except the PopulationLayer inherit from the VectorLayer<VectorFeatureType>
of the MARS Framework. The type parameter of the VectorLayer is set according to
the Vector Feature class designated to the layer. For example the LocationLayer inherits

from the VectorLayer with the type parameter set to Location.
Inheriting from the VectorLayer class allows the layers to be georeferenced in MARS.

The PopulationLayer inherits from the AbstractLayer which facilitates the holding of
resources stemming from input data, in this case, the resident population of each loca-

tion.

6.3 Relationship Between The Components

In this section a diagram displaying the associations across the migrant and location

components (Fig. 6.7) is shown and explained.

The associations across the two components are marked in red in figure 6.7.

MigrantLayer - LocationLayer association The environment the agents move through
is provided to the MigrantLayer by the LocationLayer. The LocationLayer also delivers

references to Location instances.

31

6 Design For Implementation in MARS

<<Vector Feature>>
Camp

<<Vector Feature>>
Conflict

Migrant $:| Map
gets locations
<<l ayer>>
| CampLayer
i
<<Layer=> <<Layer>> pawns at location. Environment
SchedulerLayer MigrantLayer | \l,
Spawn Locations [) <<Layer=>
I - \]/ LocationLayer PopulationLayer
<<Vector Feature>>
Location
et 1‘ <<Layer=>
“=Agent=> 1 ConflictLayer
Migranthgent urent Location
Resi dentsL

Figure 6.7: Relationship between the migrant and the map components

MigrantLayer - Location association The MigrantLayer gets a location reference

from the LocationLayer and utilizes it to spawn agents at that location.

MigrantAgent - Location association The Migrant Agent has a reference to a
location instance representing its current location. Locations can explore the environment
agents move through in order to access the agents positions, thus being able to filter by

the agents residing within its borders.

6.4 Data Integration

In this section a diagram displaying where the data sets required as input for the model

are integrated.

In the MARS Framework the data input of the simulation is made available through

layers. Each layer can provide access to one data source.

Figure 6.8 shows which layers are used to access the data sources required for the simu-

lation.

To use the data in the simulation the MARS environment reads the columns of the data
source by name. Table 6.1 provides an overview of which fields are required for each data

source.

32

6 Design For Implementation in MARS

wslayers>
SchedulerLayer

Migrant

<sLayer=>
MigrantLayer

administrative units
——— Exisitng population
data

Map

g]

GEOJSON data of

<<Layer>=>
LocationLayer

<<Layer==> <<Layer==
CampLayer ConflictLayer

GECQJSCN data of GEOQJSON data of
camps conflicts

<<Layer==
PopulationLayer

CSV data of resident
population

Figure 6.8: Required data sets integrated through MARS layers

Data Source Required Description
Fields

Existing migrant || Region Location name

population data IDPs Number of migrants

Location Data ADMX - Location name, X is the administra-
EN tive level
Geometry Polygon geometry

Camp data Geometry Point geometry

Conflict data Month month number of conflict date
Geometry Point geometry

Population data Region Location name at adm level 3
Total pop- | Number
ulation

Table 6.1: Table of required fields of data sources.

33

6 Design For Implementation in MARS

6.5 Model Output

Apart from the two main components there is a static class called Validation which
collects information from the main components to generate three important output files

in CSV format. Table 6.2 gives on overview of the output files.

File Name Description

. Syrian Refugee or IDP population of each region
InitPop.csv L . .
of the country at the beginning of the simulation

Refugee or IDP population of each administra-

RefPop.csv])]
tive of the country after the simulation run.
Routes, defined by origin and destination, taken
Routes.csv by the agents during the simulation, and the

number of agents who took each route

Table 6.2: Table of model output files.

When running the simulation of IDPs, the population output files are available at different

aggregations. There is one file for each of the administrative levels 1 to 3.

6.6 Model Configuration

The configuration of the model is a crucial aspect that defines the dynamics of the
simulation and assigns values to behavior parameters. This section outlines the various
components of the model configuration, including global simulation parameters, layer

properties and agent properties.

The MARS Framework allows the storing of the model configuration in a JSON file, which
provides a structured way to set the simulation’s parameters and inputs. There are two
JSON configuration files made available, one of which is loaded before the execution of
the simulation. One file contains the configuration necessary to simulate the movement
of Syrian refugees in Turkey. The other contains the necessary configuration to simulate

the movement of IDPs in Syria.

34

6 Design For Implementation in MARS

Global Parameters The global parameters section in the configuration file focuses on
setting overarching properties that govern the entire simulation. One of the fundamental
global parameters of the model is the execution time. In the context of the MARS
framework, the execution time can be configured in a real-time based manner. This
means that the simulation is defined by specifying a start date and an end date, along
with the time unit used for simulation steps. This ensures that the simulation progresses

in alignment with real-world time intervals.

Layer Properties Configuration The remaining of the configuration file is divided
into two main sections. One of them is the layer properties configuration. This sections
is divided in six subsections, one for each layer of the model. These subsections include

the following parameters:

Parameter Type Description

File | Data source file located in the ‘resources‘ directory

Number of New Agents Number to spawn at each step
Weights Weights used in the calculation of node scores
Social Network Parameters Number of new social ties to create

Table 6.3: Table of parameter types of the layer configuration.

Agent Properties Configuration The other main section of the configuration is the
agent properties configuration. In it the behavior governing parameters of the agents are

set. It includes settings such as:

Parameter Type Description

Behavior Parameters | Guide the impact of social ties on agents’ behavior

Move Probabilities | Define the probability of an agent being activated

Table 6.4: Table of parameter types of the agent configuration.

By utilizing the MARS framework and the structured JSON configuration file option, the

model achieves a flexible design. This configuration process enables modelers to simulate

35

6 Design For Implementation in MARS

various scenarios and to easily switch between use cases by choosing the corresponding

configuration file.

6.6.1 Simulation Mode

The executable Main method of the simulation contains a mode variable which can
be switched between "Turkey" and "Syria". When in Turkey mode, the configuration
file containing the input data and parameter configuration for Turkey is loaded into
the model. When in Syria mode, the configuration file containing the input data and

parameter configuration for Syria is loaded.

36

7 Implementation Details

This chapter describes the implementation of the layers, vector features and agent intro-
duced in the previous chapter. The descriptions are based on technical UML-diagrams,
from which the program code was derived. Helper methods have been omitted for sim-

plicity.

7.1 Migrant Component

7.1.1 MigrantLayer Implementation

The MigrantLayer’s main function is to spawn agents. The data structure AgentDistri-
butionData (fig 7.1) provides access to the input data necessary to distribute the agents
across the locations according to real-world numbers at the beginning of the simulation.
This is done by the InitAgents method.

To fulfill the different requirements of new agents entering the simulation at each step,
the MigrantLayer defines two methods. The SpawnNewRefs method is called by the
SchedulerLayer when the simulation in run in the Turkey mode i.e. to simulate Syrian

refugees in Turkey. Likewise the SpawnNewIDPs method is called in the Syria mode.

When spawning agents as IDPs, the instance variable NumAgentsToSpawn provides a
guideline for the total number of new agents spawned per simulation time step. Which
fraction of this number is spawned at each location depends on the resident population

of the location and the number of conflicts there.

After all agents have been successfully spawned, the InitSocialNetwork method can be

called which iterates over all agents and initiates the formation of their social links.

37

7 Implementation Details

Migrant

MigrantLayer

SchedulerLayer r agentDistributionData: Pair=String, int= [1..¥]
[+ numAgents ToSpawn: int

+ PreTick(): void 1 1——2|- Initagents(): void

-Spawner |+ SpawnNewRefs(): void

+ SpawnNewlDPs():void

- InitSocialNetwork(List<MigrantAgents=):void

3
-environment

-social contact

. o -agent

MigrantAgent

+ CurrentNode: Location
+ OriginNode: Location
+ MoveProbabilityCamp: double
+ MoveProbabilityOther: double
+ MoveProbabilityConflict: double
+ FriendWeight- double

+ KinWeight: double

+ Tick(): void

- Activate(int, int): bool

- Assess(Location): void

- CalcNodeDesirability(int, int, double): double
- MoveToMode(Location) : void

- InitSocialLinks() : void

+ FormFriendshipWith(MigrantAgent): void

Figure 7.1: Class diagram showing the implementation of the layer and agent classes of
the migrant component

7.1.2 MigrantAgent Implementation

The agents’ social network is implemented as sets of kins and friends which contain refer-
ences to other agents. All agents have a reference to their current location. Consequently,

all agents have access to the current location of their friends and kins.

The OriginNode instance variable is used to create the model output of routes mentioned
in the previous chapter. The probabilities and weights variables are used in the decision
making process. Their values are set through the configuration file also introduced in the

previous chapter.

The agents’ behavior is contained within the Tick method which is implemented from

the IAgent interface.

Figure 7.2 shows the sequence diagram describing the behavior logic contained in the
Tick method:

Firstly the agent gets the number of conflicts and camps at their current node, as these

parameters are needed to decide whether to leave or not. This decision is made in the

38

7 Implementation Details

SQ Agent Tick J

return

[neighbors.length < 1]

moveToNode()

“Migrant ‘Map
CurrentNode NumConflicts _
int "
CurrentMode NumCamps
int
N
ref act ’,"
activate agent
alt
return
[false]
] CurrentMode. Neighbors N
>
List=Locafion=
Ry AR
LT [neighbors]
neighbor.Score
int
{
refact /
assess locations
alt /

39

Figure 7.2: Sequence diagram showing the interactions between the migrant agent and

the map locations in the Tick method

7 Implementation Details

ACT activate

.) o s o)
i Slse if num._camps » 07 num_conflicts > 07 Imuve = random < MOVE_PROBABILITY_CONFLICT

move = random < MOVE_PROBABILITY_CAMP

else

move = random < MOVE_PROBABILITY_OTHER ;

return move

Figure 7.3: Activity diagram showing the decision logic of agent activation
activate method. Details on the activation logic are displayed in the activity diagram in
figure 7.3.

Whether an agent leaves a location depends primarily on the presence of conflicts there.
If an agent is activated, the neighbors of the current location are assessed and the neigh-
boring location deemed most desirable is chosen as the next destination. Details on the

location assessment logic are displayed in the activity diagram in figure 7.4.

The method CalcNodeDesirability simply calculates the equation used in the reference

model. This equation is mentioned in the Materials and Methods chapter.

7.2 Map Component

7.2.1 Camps and Conflicts

The CampLayer collects the coordinates of camps and makes it accessible, so locations

can count the number of camps within its borders.

40

7 Implementation Details

act assess nodes

for node inn

neighbours . />

neighbors. Count = 0?

<<|oop==

eighbours

nodeDesirability = highestDesirability?

E [numFriendsAtNode = getNumFriendsAtNode()
E [numkinsAtNode = getNumKinsAtNode()
E [nodeDesirability = calcDesirability()

[highesDesirability = nodeDesirability

return mostDe

[mostDesirableNode = node

sirableNode

41

Figure 7.4: Activity diagram showing the algorithm of location assessment

7 Implementation Details

Map

CampLayer

=1
+ getCamps(): Geometry [0..7]

_neighbor -
Camp
1
Location 1 + geiCoordinates(): Geometry
LocationLayer
+ Score: double

+ MigPop: int - populationWeight: double
+ NormMigPop: double - campWeight double
+NumCamps: int - conflictWeight: double
+ NormNumCamps: double - locationWeight: double
+ NumConflicts: int -anchorCoordinates: Coordinate PopulationLayer
+NormNumConflicts: double - environment: GeoHashEnvironment
+ AnchorScore: double 1> 1 1
+NormAnchorScore: double - CalcScore(LocationNode): void + SyrianPopulationData: Pair<string, int=[1."]
+ GelLocationByName(String):Location
- gelRandomAgentsAlNode(): void + GetLocationsinProvince(String): Location [1..4]
+ UpdateNormMigPop(int): int + InitLocationParams()void
+ GetName(): String + PreTick() : void
+ GetProvinceName(): String + PostTick(): void
- initCamps(): void
- initConflicts(): void
T
1

ContflictLayer
1_>+ getConflicts(): Conflict [0..%] e ——

Conflict

t+ Month: long
[+ Day: long

+ getCoordinates(): Geometry

Figure 7.5: Class diagram showing the implementation of the layer and vector feature
classes of the map component

The ConflictLayer makes conflict vector feature instances accessible directly, so locations
can not only count the number of conflict events within its borders, they can also check

that the events are taking place at the same time as the simulation.

7.2.2 PopulationLayer

The PopulationLayer’s only function is to hold information on the resident population of
each Syrian administrative unit. This information is extracted from the population data
file during the initialization of the PopulationLayer and referenced by the SyriaPopula-

tionData instance variable.

7.2.3 LocationLayer
Environment The agents move through an environment, their current positions are

made accessible to the map component through this same environment. It is first instan-

tiated at the LocationLayer and provided to the agents by the MigrantLayer.

42

7 Implementation Details

ACT Pretick LocationLayer

.—,I’ maxMigPopulation = maxMigPop() ‘

<<|oop:>>

for location in location

‘4 updateNormMigPop() |

‘ calcScore() |

Figure 7.6: Activity diagram showing the behavior of the LocationLayer before every
simulation step

Initialization of Location Parameters The LocationLayer calls the InitLocation-
Params method to initialize the locations parameters needed for the decision making
process. The method normalizes the number of conflicts, the number of camps and the
anchor score of the locations. The anchor coordinate variable contains the coordinates of
a general location migrants are moving to, and is needed to calculate the anchor score. In
this case, London was chosen but the exact location doesn’t make a significant difference
(Richey, 2020).

Moreover, the neighbors of each location are determined.

Calculating Location Scores The LocationLayer re-calculates the location scores
(CalcScore method) before every simulation step (PreTick method). It should not be

calculated after the simulation step, so the first step is run with valid score values.

The calculation of location scores necessitates the weight parameters. The values of

weights as well as the anchor coordinates are set in the simulation configuration file.
Details on the calculation of node scores are displayed on the activity diagram (fig 7.6).

The reason the location scores need to be re-calculated in the first place is that it is
dependant on the migrant population at the location. Since this number changes after

every step, the normalized population number has to be calculated again.

43

7 Implementation Details

Updating The Social Network The LocationLayer initiates the updating of social
networks by calling the locations which contain camps. The method called chooses two
agents at random at the location and makes a call to form a friendship tie between both
of them. This procedure needs to be executed after each simulation step, which is why

it is implemented in the PostTick method.

The sequence diagram in figure 7.7 displays the behavior logic described above.

Access to Locations and Locations in a Province The LocationLayer has two

methods which return references to locations:

The method GetLocationByName returns the location whose name corresponds to the

call parameter. If there is no location instance to the name an exception is thrown.

The method GetLocationsInProvince returns a list of locations situated in the province
given in the call parameter. A province is defined as the administrative level 1. The
locations returned are the administrative units in the level input in the configuration file.
If the model is configured to run in the administrative level 1, then the location whose
name corresponds to the call parameter is returned. If the province cannot be found,
the system tries to find a district or sub-district (administrative levels 1 and 3) whose
name corresponds to the call parameter. If one isn’t found, an exception is thrown. This
method contributes to the flexibility of granularity of the administrative level chosen for
the simulation. It does so by allowing agents to be spawned at the beginning of the
simulation at locations corresponding to lower aggregate administrative units than the

available existing population data.

7.2.4 Location Vector Feature

Initialization At the time of initialization each location instance extracts the name of
the administrative unit it represents and its province name from the data row provided
by the LocationLayer. These names can be queried by calling the method GetName and

GetProvince name.

Furthermore the anchor score is set at initialization by calculating the distance of the
location to the anchor location. The methods InitConflicts and InitCamps iterate over
the coordinates of all camp and conflict instances and counts the number of camps and

conflicts within the location’s borders.

44

7 Implementation Details

$Q PostTick
LocationLayer

loop

“Migrant

‘Map
[Locations]
alt / '
— ! [camps > 0]
loop
[numberNewTies]
getRandomAgentzAtMode()
FormFriendshipWith()
at /' [camps==0]
return

Figure 7.7: Sequence diagram showing the method calls made to update the social net-

works of agents after every step

45

7 Implementation Details

The conflicts are further filtered by the events taking place at the time period of the

simulation.

Updating The Social Network The method getRandomAgentsAtNode is called by
the LocationLayer if the location contains a camp. In this method the environment
providing the positions of all agents is accessed and the agents situated at the location

are filtered. Then two agents are picked at random to become friends.

46

8 Data Sourcing and Preparation

In the preceding chapters the necessary data sources for the model were established,
the methodology for integrating these data sources into the simulation environment was
outlined and the manner in which the data was utilized in the model was touched on.
This chapter delves into the aspect of data sourcing and preparation, detailing the path

taken to acquire and preparing the input data.

8.1 Data Sourcing

Data Sources for the Turkey Simulation For the Turkey simulation all the data
sources required to replicate the reference model were retrieved from its GitHub repos-
itory (https://github.com/mricheyl7/mig/tree/master). The advantage is
that the data aligns with the reference model, ensuring consistency and comparability.
All data sets were available as shapefiles, with the exception of the conflict data, which
is in CSV format.

Data Sources for the Syrian IDP Simulation For the simulation concerning Syrian
IDPs, data was sought from various sources. The data origins include the Humanitarian
Data Exchange (HDX, 2023), which provided geospatial data pertaining to Syria and its
IDP camps, as well as information on IDP populations and resident populations across
Syrian administrative units. Data on conflict events within Syria was sourced from the
Armed Conflict Location and Event Data Project (ACLED, 2023).

It’s important to acknowledge the challenges faced when sourcing data for the Syrian
IDP simulation. Notably, the scarcity of data pertaining to the same reference time
period presented a challenge. The newest available IDP camp data is from early 2016,
and the oldest IDP population data is from the end of 2016. The only accessible resident
population data dates back to 2004. Nevertheless, the conflict data is meticulously

47

https://github.com/mrichey17/mig/tree/master

8 Data Sourcing and Preparation

detailed, and the IDP camp data is verified through satellite imagery. Moreover, the
IDP population data consists of arrival estimates per Syrian governorate and is sourced

from a collective of multiple humanitarian actors.

8.2 Data Preparation

Data Preparation for the Turkey Simulation The data preparation for the Turkey
simulation involved converting the shapefiles to GEOJSON out of personal preference, as
both file types are compatible with the MARS Framework. This conversion was carried
out using QGIS.

The conflict data, initially in CSV format, was also converted to GEOJSON using QGIS,
so it is compatible with the ConflictLayer, which can only receive georeferenced data as

input.

IDP Simulation Data Preparation Preparing data for the Syrian IDP simulation

was more intricate:

The IDP population data file was converted from Excel to CSV to meet the MARS Frame-
work’s file type requirements. Subsequently, data attributes were extracted and cleaned

to remove unwanted characters. This process was facilitated using Jupyter Notebook.

The data on conflict events in Syria was converted to GEOJSON, but prior to that, the
day and month attributes were extracted for each conflict event using Jupyter Notebook.

This step was taken to facilitate dynamic conflict calculations.

Preparing the Syrian resident population data was the most challenging. This data
also underwent format conversion from Excel to CSV. Discrepancies in location names,
attributed to variations in English spellings, presented a challenge. To harmonize district
names between the Syrian resident population data and Syria geodata, a data join was
performed using Jupyter Notebook. Any unmatched data points were rectified by aligning

name spellings.

48

9 Verification And Validation

Having meticulously explored the intricacies of model implementation and the prepara-
tion of integrated data sources in preceding chapters, now the model verification and

validation processes are presented and discussed.

9.1 Verification

Verification, a pivotal step in model development, serves the function of determining
the correctness of the model’s implementation. It encompasses debugging, meticulous
examination of calculations, and testing of model components (Xiaorong Xiang et al.,
2005).

Accordingly the verification process for this model consists of repeatedly running the
simulation in debug mode to identify and rectify errors, to scrutinize the code for semantic
coding issues, and most importantly, of testing the separate functions of the model which

come together to produce an emergent behavior.

The tests were conducted using the open-source unit testing tool for the .NET Framework
xUnit (xUnit.net, 2023).

Building the Test Environment In order to write the tests described above, a simpli-
fied version of the simulation environment had to be built manually, when it is otherwise
built by the MARS Framework. Figure 9.1 shows the initialization routine called by the

test class.

49

9 Verification And Validation

_locationLayer = new LocationLayer();
_populationLayer = new PopulationLayer();

_locationlLayer.PopulationLayer = _populationLayer;
_locationLayer.InitLayer(new LayerInitData
{

LayerInitConfig =

{

1

_conflictLayer = new ConflictlLayer();
_conflictLayer.InitLayer(new LayerInitData

{
LayerInitConfig =
{
File = Path.Combine(
rPath ,"conflicts_syria_17.geojson")
].
o

_campLayer = new CampLayer();
_campLayer.InitLayer(new LayerInitData

{
LayerInitConfig =
{
File = Path.Combine(
rPath, "turkey_camps_idps.geoisen")
].
b;

Figure 9.1: Diagram showing the initialization of the simulation environment for testing

The following model functionalities were tested via unit tests:

Environment This test verified the seamless integration of agents into the environ-
ment, assessing their ability to traverse it. It also confirmed the model’s capacity to
retrieve agent information and positions from the environment. For its implementation,
two agents were spawned at a selected location and then retrieved by accessing the en-
vironment. One of them was then moved to another location in order to check if the

position of agents is updated properly in the environment.

Location Initialization Ensuring that all location parameters began with accurate

and valid values, this test compared initialization values with manual determinations

50

9 Verification And Validation

of the number of camps, conflicts, and neighbors at three selected locations. An addi-
tional test confirmed that the resident population of a location, made available by the

population data, is correct for a selected location.

Migrant Population Per Location This test validated that the number of migrants
at each location aligned with expectations, even with agents entering and departing

locations concurrently.

Number of Social Contacts At Location Agents’ decision-making relies on factors
such as the number of friends and kins at a location. This test scrutinized the system’s
ability to provide and retrieve this critical information accurately. This was achieved
by adding social ties between two agents whose locations are known, and checking if
the method called to determine the number of social contacts at a location returns the

correct result.

Update of Social Network Social networks evolve through the formation of new
friendship ties at camp locations. This test validated the sequence that successfully adds

new friend references to an agent’s network, ensuring the integrity of this feature.

Challenges of Verification The decision making process of agents depend on pseudo-
random numbers, such as the social contacts of agents being picked at random. While this
has the benefit of simulating unmeasured variables and random effects, all simulation runs
are expected to have different outcomes, making some parts of the simulation difficult to

verify.

9.2 Validation

Validation is the process of ensuring that the behavior of the model corresponds to the
behavior of the target (Gilbert, Troitzsch, 2005). It determines if the simulation outputs
are consistent with real-world outputs (Xiaorong Xiang et al., 2005). In this case the

target behavior is the real-world movement of Syrian forced migrants.

51

9 Verification And Validation

Relevant Methods of Validation Here are some methods of validation which are

relevant in the context of this work:

1. Empirical Validation: The simulation output is compared against real-world data
(Gilbert, Troitzsch, 2005).

2. Satisfaction Tests: Determine whether the desired or intended outcome has been

achieved to a sufficient degree (Bungartz et al., 2013).

3. Model Comparison: Compare the model’s results to the results of another model

which has already been verified (Xiaorong Xiang et al., 2005).

4. Face Validity: Examine a graphical representation of the model’s behavior and decide

if the model behaves reasonably (Xiaorong Xiang et al., 2005).

Challenges of Validation The complex nature of ABMs, the numerous variables and
the possible variation in results from tweaking just one variable make validating ABMs a
difficult task. The complexity of the system also makes it difficult to be sure whether the

behavior of the simulation is representative of the actual system (Niazi et al., 2017).

Furthermore both the simulation and the target behavior which is to be reflected in
the simulation, are likely to depend on random factors. Thus it is difficult to estimate
whether a model can be trusted based on the difference between model outputs and
data. It could also be the case that the model logic is correct but the real-world data is
incorrect (Gilbert, Troitzsch, 2005).

9.2.1 Validation of Syrian Refugees in Turkey Simulation

Validation data In order to validate the model, simulation predictions are compared
against the outputs of the reference model, which has already been validated. The input
data is the same as the reference model’s, except that the simulation started with a
refugee population of only 2 344 876 instead of the real number 3 607 694. The reason
being the bad performance at such a high number of threads. The reference model was
tested using the actual number, but it was run on virtual machines with 16 virtual CPU

clusters (Richey, 2020), while the MARS model was run on a single dual core processor.

52

9 Verification And Validation

Validation Idea Since no real-world data for validation could be found, a combination
of the model comparison and face validity validation methods are employed to ensure
that the behavior of Syrian refugees in Turkey are sufficiently representative of the actual
system. The only outputs from Richey’s model available are maps of Turkey which
visualize the distribution of refugees over the districts after the simulation run. In order
to compare the results, a map showcasing the ten most common routes undertaken by
individual agents is created using the results of the replicated MARS model after a
simulation run of the same length (40 days), with the parameter values suggested by
Richey. Finally, a comparative analysis of the two maps is conducted. The aim is
to assess the extent to which the replicated model’s behavior aligns with the reference

model’s.

The following table shows the suggested parameters:

Parameter Name || Value

kin weight 0.2

friend weight 0.2

camp move probability 0.3
conflict move probability 0.7

other move probability 0.85

population weight 0.75

camp weight 0.75

conflict weight 0.75

location weight 0.75

number new agents to spawn 50

Table 9.1: Table of parameter values for the Turkey simulation run.

Outputs and Discussion Figure 9.2 shows the reference model’s output map of
Turkey, with regions color-coded to indicate the concentration of Syrian refugees (Richey
2020). Over time, the reference model shows a significant shift in the distribution of

refugees, as they transition from a more dispersed pattern to congregating in the south-

53

9 Verification And Validation

Time Step 40

Figure 9.2: Output of the reference model after 40 days

250 s 0.0 25 ».0 s 400 425 45.0

Figure 9.3: Output of the replicated model after 40 days

54

9 Verification And Validation

ern and mid-western regions of the country, with Istanbul in the north-west emerging as
a notable hub.

Figure 9.3 shows the output of the replicated model offering a view of refugee agents’
movements throughout the simulation period. Each route on the maps represents the
journey from an origin location (represented by a red dot) to a destiny location (repre-

sented by a green dot).

Analyzing the MARS model’s output, it becomes evident that agents have gravitated
towards select regions in the southern part of the country, leading to localized pooling.
Additionally, a substantial number of agents have migrated to Ankara in the mid-west
and Istanbul in the north-west, in line with the reference model’s observations. However,
the model also reveals a behavior absent in the reference model, with a significant influx

of agents moving further eastward.

9.2.2 Validation of IDPs’ Simulation

Validation Data In order to validate the model, simulation predictions are compared
against real-world estimated data on IDPs’ population per Syrian governorate. The
validation data used is from January 2017. The simulation is configured using the ad-
ministrative level 3 of Syria. The output is aggregated by governorate (administrative
level 1). The initial number of IDPs per district is reduced for the calibration exper-
iments in order to perform many model runs, which would otherwise take a very long
time. Thus the model started with a total of 170560 agents for each experiment instead

of the data driven approximated number of 2 048 183.

Validation Idea In order to validate the model with the movement of IDPs as the
target, a variation of the empirical validation method is employed. Since the available
data on IDPs’ population per governorate is based on estimated numbers, the validity of
the model would not be accurately reflected by calculating model error based on absolute
values. Instead, the proportional distribution of IDPs across Syrian governorates is used
for validation. The percentage of total IDPs in a governorate is taken from the actual

data and compared against the percentage predictions made by the simulation.

55

9 Verification And Validation

Error calculation The MAPE (Mean Absolute Percentage Error) is a measure of
accuracy of a forecast system (StatisticsHowTo, 2022). The absolute percentage error for
each governorate is calculated based on the proportional distribution. Having calculated
the error for each governorate, the MAPE is calculated by adding up all the error values
and dividing the result by the number of governorates. Equation 9.1 shows the MAPE

calculation, where N is the total number of governorates.

N .
1 Z actual__percentage, — predicted_percentage; % 100 (9.1)
=1

N 4 actual _percentage;

Calibration

Using the described validation method, the model parameters are re-calibrated to fit the
IDP simulation use case. For each calibration experiment, the model is run three times

and the outputs are averaged.

Firstly, the error for the model run using the parameter values suggested by Richey
(Richey, 2020) is calculated, representing a baseline to compare against. The baseline
value for each parameter is the same as in table 9.1. The exception is the number of
new agents to spawn, which is set to 9500. This number is taken from real world average
estimations (Mooney, 2023). Moreover, the new agents are dispersed throughout the
country and not spawned at a handful of locations. Table 9.2 shows the calculated
MAPE across all districts for each calibration experiment. The calculated error for the
baseline run is 144.5%.

Simulation Run with calibrated parameters The simulation ran again using the
local minima of the parameters determined through calibration. This time with the total
initial IDP population of 2 048 183. After 30 days there was a total of 2 347 891 agents in

the simulation. The average calculated MAPE for this model run amounts to 66.7%.

Calibration Experiments Discussion The baseline accuracy of over 144% can only
be improved slightly by changing the value of parameters, indicating a low sensitivity
factor. Notably, assigning a low value to the camp weight improved accuracy the most,
diminishing the MAPE by about 14% (Experiment 1.1). A remarkable accuracy im-

provement is achieved by running the simulation with a substantially higher number of

56

9 Verification And Validation

agents, which confirms the observation made by Richey (Richey, 2020) that the accuracy
of the model is highly dependent on the number of agents.

57

9 Verification And Validation

Experiment Number || Calibrated Parameter || Parameter Value MAPE
1.1 camp weight 0.05 130.7%
1.2 camp weight 0.5 || 144.03%
1.3 camp weight 0.75 || 142.59%
2.1 conflict weight 0.25 || 132.57%
2.2 conflict weight 0.75 || 150.08%
2.3 conflict weight 0.95 || 142.18%
3.1 social weights 0.0 || 144.75%
3.2 social weights 0.5 144.9%
3.3 social weights 0.75 || 144.94%
4.1 population weight 0.5 || 139.44%
4.2 population weight 0.25 || 142.17%
4.3 population weight 0.0 || 196.45%
5.1 location weight 0.5 || 143.40%
5.2 location weight 0.25 || 141.21%
5.3 location weight 0.05 || 141.36%
6.1 camp move prob 0.1 || 136.53%
6.2 camp move prob 0.5 || 144.88%
6.3 camp move prob 0.75 || 142.59%
7.1 conflict move prob 0.5 || 140.98%
7.2 conflict move prob 0.9 || 142.36%
8.1 other move prob 0.65 || 143.90%
8.2 other move prob 0.45 || 140.42%
8.3 other move prob 0.25 || 139.40%

Table 9.2: Table of calibration experiments.

58

10 Scenarios

In the previous chapter the model verification and validation process was described in
detail. Notably the model’s IDP behavior simulation was validated empirically. In this
chapter, satisfaction tests are conducted in the form of prediction scenarios. Based on
these scenarios, the question of whether this model holds the potential to be useful for

humanitarian organizations in their resource distribution planning can be explored.

10.1 Scenario Description

The following scenarios aim to provide practical insights into the distribution of IDPs
at varying administrative levels, thereby aiding in more informed resource allocation
decisions. Each scenario involves running the simulation with the calibrated parameter
values. Utilizing 2 053 122 agents, and spanning a simulation period of 30 days in the
month of March 2017. The initial IDP population per region is taken from real-world
data of IDP arrival estimations from the end of 2016 plus the arrivals in January and

February. The number is then reduced by 300 000 because of performance issues.

10.1.1 Scenario 1: Administrative Level 1

The first scenario is centered on predicting the distribution of IDPs across the Syrian
governorates, which represent administrative units at level 1. The aim is to forecast how
IDP populations are likely to be distributed across these larger geographical areas. This
prediction has substantial implications for humanitarian organizations at the macro level,
providing insights into resource allocation and aid planning on a statewide scale. This

scenario is additionally run in the time period of January 2017.

59

10 Scenarios

10.1.2 Scenario 2: Administrative Level 2

In the second scenario, the focus is narrowed to the Syrian districts, which are admin-
istrative units at level 2. This scenario seeks to predict the distribution of IDPs at
a more localized level. Such predictions are invaluable for humanitarian organizations
with district-level operations, allowing for more precise resource distribution and response

planning.

10.1.3 Scenario 3: Administrative Level 3

The third scenario dives even deeper, focusing on the Syrian sub-districts, which are
administrative units at level 3. Predicting the distribution of IDPs at this granular level
provides a highly detailed understanding of population movements. This level of pre-
diction serves humanitarian organizations involved in localized and community-specific

relief efforts, enhancing their capacity for targeted resource allocation.

10.1.4 Scenario 4: Routes Prediction
The fourth scenario involves the prediction of the most common IDP routes within the

simulation. This scenario offers an opportunity to explore if routes taken by IDPs in

Syria can be reproduced in the model.

10.2 Results

10.2.1 Results of Scenario 1
The figures 10.1 to 10.4 show the predictions made by the model in the context of the first

scenario, compared against real-world data for the same time period and administrative

level.

60

10 Scenarios

a8

az

(a) Predicted

as

= a6
a4
e} a2
% I = k] 40 M 42
(b) Actual

Figure 10.1: Map of predicted IDP population density compared against population den-
sity from real-world estimations in March 2017

61

10 Scenarios

Em RefPop

a8

06

04
02 I I
; : g k]
£

ao

e« =m0 & a 0om w 0090 = @& @ 0m o
3;2:; Eﬂwvah &
N R N HE R S N S A A
8 & i I = 2
S
=]
'3
(a) Predicted
1e6
N DFs
10
a8
06
a4
02 I
OD____--...II
s 2 = g B 5 & 5 s 3 = &2 2
£E £ & ¢ i@ 3 P ¥ 5 5 & & % #
s ¢ 3 & g E ¢ B z
L & & z R
F
(b) Actual 62

Figure 10.2: Bar chart of predicted distribution of IDPs across governorates compared
against real-world estimations in March 2017

10 Scenarios

(a) Predicted

(b) Actual

30000

25000

20000

15000

10000

5000

Figure 10.3: Map of predicted IDP population density compared against population den-

sity from real-world estimations in January 2017

63

10 Scenarios

1e6
. RefPop
10
o8
06
a4
M I
00 — — | . . . l
T & 0§ 3 ¢ 2 ¢ & § & 3 31 3
AN N S A R R R N N S SR R
a 2 i z = a
) H
(a) Predicted
N DPFs
30000
25000
20000
15000
10000
) I I
; == mm mu -
3 2 E 2]] @ @ @ a 2 " o
o 5 " 3 :’; :i‘:1 E x E
2 & = 4 a
f
I
(b) Actual
64

Figure 10.4: Bar chart of predicted distribution of IDPs across governorates compared
against real-world estimations in January 2017

10 Scenarios

Both the model output and the real-world data, depicted through maps and bar charts,
share common features, such as showcasing the highest IDP population densities in the
north-west and south-west regions of Syria. However, a few notable disparities emerge.
The most significant of these disparities is evident in Rural Damascus, where the model
underestimates the IDP population in January. Furthermore, when analyzing the bar
charts, it becomes evident that the model’s predictions consistently underestimate the

IDP population in Damascus.

In contrast, the model performs well in identifying the top 5 governorates with the high-
est IDP populations—Aleppo, Rural Damascus, Idleb, Dar’a, and Ar-Raqqa—correctly
predicting their prominence. Additionally, it accurately anticipates three out of the five
governorates—As-Sweida, Quneitra, and Tartous—with the smallest IDP populations in
January. Furthermore, the model predicts four out of the five with the smallest IDP

population with Damascus being included.

10.2.2 Results of Scenario 2

Also visualized through color-coded maps, the model’s output map, displayed in red, is
juxtaposed with the real-world data map, represented in blue. Additionally, a third map,
colored in green (Figure 10.5), illustrates the initial distribution of the IDP population

over the districts, offering a reference point.

0000
25000

0000

15000

0000

Figure 10.5: Initial distribution of IDP population for March predictions

65

10 Scenarios

250000

200000

150000

100000

0000

(a) Predicted

200000
175000

150000

125000
100000
75000

5000

\ 25000

(b) Actual

Figure 10.6: Map of predicted IDP population density per administrative level 2 com-
pared against real-world estimations in March 2017

66

10 Scenarios

Both the model output map and the real-world data map exhibit notable IDP concen-
trations within specific districts. Regions in the north-west and south-east consistently
stand out, demonstrating a degree of alignment between the model output and real-world
data. However, the broader comparison reveals divergences. The real-world map, in par-
ticular, showcases concentrations in distinct districts that differ from those highlighted
on the model output map. However, these discrepancies are tempered by the observation
that the IDP concentrations in the output map tend to exhibit close proximity to those

seen on the real-world data map.

10.2.3 Results of Scenario 3

67

10 Scenarios

»
. "‘r‘q
k-3
kY
n
» T = 1] 40 il 42

(a) Predicted

(b) Actual

175000

150000

125000

100000

5000

0000

25000

0000

60000

‘50000

40000

30000

20000

10000

Figure 10.7: Map of predicted IDP population density per administrative level 3 com-

pared against real-world estimations in March 2017

68

10 Scenarios

An analysis of the maps at the administrative level 3 reveals even denser concentrations
of IDPs within certain sub-districts. Both the model output map and the real-world
data map shine a spotlight on regions where IDPs have notably congregated. In the
model output map, this is often manifested as the emergence of specific districts marked
by a pronounced pooling of IDPs. Conversely, the real-world data map exhibits a more

widespread pattern of IDP presence across sub-districts.

10.2.4 Results of Scenario 4

Figure 10.8 shows the most common routes of the agents in the model and the most
common routes of IDPs according to real-world estimations. Each common route, rep-
resenting the most frequently chosen destination from each of the 14 governorates, is
illustrated through two dots connected by a line. The red dot signifies the origin, while
the green dot denotes the destination, creating a visual representation of these migration

paths. Green dots not connected by a line represent return movements.

69

10 Scenarios

(a) Predicted

(b) Actual

Figure 10.8: Map of predicted IDP population density per administrative level 2 cor%
pared against real-world estimations in March 2017

10 Scenarios

Upon analyzing these maps, you can see that the only route depicted in both the model
output and real-world data maps is the one between Idleb and Aleppo. While the real-
world data map presents a trend of movement towards the north-western regions of
Syria, the model output not only reflects the north-western migration trend but also

demonstrates an additional pattern of movement toward the center of the country.

71

11 Discussion

This chapter is dedicated to a discussion of the results obtained from the four simulation
scenarios conducted previously. We will delve into the potential utility of the model for
humanitarian actors operating in Syria and analyze the sources of error in the model,

shedding light on areas where improvements may be necessary to enhance its accuracy.

11.1 Analysis of Model Utility for Humanitarian Actors

Based on the findings from scenario 1, the model holds potential value for humanitarian
organizations operating at the statewide level. The model’s ability to predict the top 5
governorates with the highest IDP populations can inform resource allocation strategies,

helping organizations prioritize aid where it is most needed.

However, as scenarios 2 and 3 reveal, the model’s usefulness for humanitarian actors
with district- and subdistrict-level operations is limited by prediction inaccuracies at
these finer-grained levels. This limitation can impact the precision of resource distribu-
tion and response planning. Nonetheless, it’s worth noting that the proximity of IDP
concentrations on the model output map to the real-world data map partially mitigates

this restriction, providing some utility at district and subdistrict levels.

The model’s inability to accurately predict migration routes, as demonstrated in Scenario
4, significantly restricts its utility in this regard. The model introduces patterns of
movement that do not align with real-world migration trends, limiting its practicality for

predicting and planning for IDP movements.

In conclusion, the model shows promise in providing valuable insights for humanitar-
ian actors, particularly at the statewide level. However, its limitations at finer-grained
administrative levels and in predicting migration routes underscore the need for further
research and improvements to increase its practicality for real-world decision-making and

planning in the context of internal displacement.

72

11 Discussion

11.2 Sources of Error in the Model

The following sources of error warrant consideration and potential improvements:

1. Agent Scaling: The model error was significantly reduced by running the simu-

lation with more agents. This observation aligns with the idea that migration is an

emergent behavior, and a larger scale is essential to accurately replicate real-world

behavior (Hinsch, Bijak, 2019). Increasing the number of agents is an avenue to

explore for refining the model.

2. Infrastructure Data: Harrison’s research highlighted the significance of infras-

tructure in the decision-making process of IDPs in Syria (Harrison, 2016). This

implies that the absence of data related to the state of infrastructure across Syrian

regions hampers the model’s accuracy. Incorporating such data, if available, could

potentially improve the model’s performance.

3. Rudimentary Social Network Functionality: The social network functional-

ity, replicated from the reference model, remains rudimentary and does not signifi-

cantly contribute to the accuracy of IDP simulations. Enhancing this aspect of the

model may lead to more realistic results.

4. Initial IDP Population Distribution: The model’s initial distribution of IDPs

is a substantial factor in the decision-making mechanism. However, relying on

evenly distributing the population of a governorate across its administrative units

did not reflect real-world patterns. Acquiring more precise initial IDP population

data could address this discrepancy.

5. Outdated Resident Population Data: The use of resident population data

from 2004 to spawn new agents may introduce inaccuracies due to its age. Updating

this data to reflect current numbers could lead to more accurate simulations.

73

12 Conclusion and Next Steps

The thesis followed two primary research objectives. The first was to redesign an existing
agent-based model originally developed by Richey (2020) to predict the distribution of
Syrian refugees across Turkey. This involved adapting Richey’s model to operate within
the MARS framework, a decision driven by the framework’s scalability and intuitive
design. The second research objective was to extend this model to simulate IDPs in Syria,
evaluating whether the modified model, inclusive of IDPs, could offer valuable insights

for humanitarian organizations in the context of resource distribution planning.

The efforts to achieve these objectives have yielded significant achievements and insights

into the field of agent-based modeling in humanitarian settings.

The utilization of the MARS framework for the redesign and extension of the model
provided the necessary tools to adapt and enhance the model effectively. By incorporating
the complexities of internal displacement in Syria, a realm largely uncharted in the

domain of empirically validated ABMs of forced migration was entered.

The analysis of four scenarios highlights the model’s potential utility. In scenario 1, it
provides valuable insights at the statewide level, having the potential to aid in resource
allocation. The model accurately predicts top governorates with high IDP populations.
However, inaccuracies in predicting IDP distributions at finer administrative levels and

migration routes pose limitations.

Further limitations include the lacking resources to scale the simulation further. Greater
scalability would provide insights into the model’s evolving accuracy. Data accessibility,
particularly up-to-date population data, impacts accuracy calculations and fidelity to

real-world conditions.

In order to further advance the model’s utility for humanitarian organizations, future
research should prioritize scaling up the number of agents in the simulation and the

tackling of the error sources in the model described in the previous chapter. Another

74

12 Conclusion and Next Steps

intriguing avenue for future work is to apply the model to other conflict zones, testing

its adaptability and effectiveness in diverse humanitarian contexts.

In conclusion, the model represents a significant step in humanitarian simulation engi-
neering. It demonstrates the potential for providing valuable insights at a statewide level
and offers a solid foundation for future work. While challenges remain, these limitations
should not deter further exploration but rather inspire continued efforts to refine and

expand the model’s utility.

75

Bibliography

ACLED . Data Export Tool. 2023. Available online at https://acleddata.com/
data-export-tool/, checked on 10/12/2023.

Bungartz Hans-Joachim, Zimmer Stefan, Buchholz Martin, Pfliger Dirk. Modellbildung
und Simulation - Eine anwendungsorientierte Einfiihrung. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013. Second Edition.

Clemen Thomas, Ahmady-Moghaddam Nima, Lenfers Ulfia A., Ocker Florian, Osterholz
Daniel, Strobele Jonathan, Glake Daniel. Multi-Agent Systems and Digital Twins for
Smarter Cities // Proceedings of the 2021 ACM SIGSIM Conference on Principles of
Advanced Discrete Simulation. 2021a. 45-55. (ACM Digital Library).

Clemen Thomas, Lenfers Ulfia A., Dybulla Janus, Ferreira Sam M., Kiker Greg A.,
Martens Carola, Scheiter Simon. A cross-scale modeling framework for decision sup-
port on elephant management in Kruger National Park, South Africa // Ecological
Informatics. 2021b. 62. 101266.

Doocy Shannon, Lyles Emily, Delbiso Tefera D., Robinson Courtland W. Internal dis-
placement and the Syrian crisis: an analysis of trends from 2011-2014 // Conflict and
health. 2015. 9. 33.

Epstein Joshua M. Agent Zero: Toward Neurocognitive Foundations for Generative
Social Science. 25. Princeton: Princeton University Press, 2014. 1. (Princeton Studies

in Complexity).

Gilbert Nigel, Troitzsch Klaus G. Simulation for the social scientist. Berkshire: Open
University Press, 2005. Second Edition.

Guizzardi Giancarlo. Ontological Foundations for Structural Concept Models. Enschede,
2005.

Guizzardi Giancarlo, Wagner Gerd. Tutorial: Conceptual simulation modeling with
Onto-UML // 2012 Winter Simulation Conference. 2012. 1-15.

76

https://acleddata.com/data-export-tool/
https://acleddata.com/data-export-tool/

Bibliography

Gulden Timothy, Harrison F. Joseph, Crooks T. Andrew. Modeling Cities and Displace-
ment through an Agent-based Spatial Interaction Model // The Computational Social

Science Society of America Conference. 2011.

Giingor Ozlem, Giinnec Dilek, Salman F. Sibel. Prediction of Migration Paths Using
Agent-Based Simulation Modeling: The Case of Syria // Proceedings of the Inter-
national Conference on Industrial Engineering and Operations Management, Istanbul,
Turkey, March 7-10, 2022. Southfield, Michigan, USA: IEOM Society International,
2022.

HDX . The Humanitarian Data Exchange. 2023. Available online at https://data.
humdata.org/, checked on 10/12/2023.

Harrison Ethan. Modeling Syrian Internally Displaced Person Movements: A Case Study
of Conflict, Travel, Accessibility, and Resource Availability. 2016. (Student Writing).

Hébert Guillaume Arnouzx, Perez Liliana, Harati Saeed. An Agent-Based Model to Iden-
tify Migration Pathways of Refugees: The Case of Syria // Agent-Based Models and
Complexity Science in the Age of Geospatial Big Data. 2018. 45-58.

Hinsch Martin, Bijak Jakub. Rumours lead to self-organized migration routes // The 2019
Conference on Artificial Life: How Can Artificial Life Help Solve Societal Challenges?
2019.

Hiining Christian, Adebahr Mitja, Clemen Thomas, Dalski Jan, Clemen Ulfia A., Grund-
mann Lukas, Dybulla Janus, Kiker Greg A. Modeling & Simulation as a Service with
the Massive Multi-Agent System MARS // Agent-Directed Simulation Symposium
(ADS 2016). 2016. (Simulation series).

Klabunde Anna, Willekens Frans. Decision-Making in Agent-Based Models of Migration:
State of the Art and Challenges // European journal of population = Revue europeenne
de demographie. 2016. 32, 1. 73-97.

MARS-Group . Hello from MARS. 2023. Available online at https://www.mars-
group.org/, checked on 10/06/2023.

Mooney Erin. The inside story: internal displacement in Syria. 2023. Available online at

https://www.fmreview.org/syria/mooney, checked on 10/13/2023.

Niazi Muaz A., Hussain Amir, Kolberg Mario. Verification & Validation of Agent Based
Simulations using the VOMAS (Virtual Overlay Multi-agent System) approach. 2017.

77

https://data.humdata.org/
https://data.humdata.org/
https://www.mars-group.org/
https://www.mars-group.org/
https://www.fmreview.org/syria/mooney

Bibliography

Padgham . Developing Intelligent Agent Systems. Chicester: John Wiley and Sons, 2004.

Project Jupyter . About Us. 2023. Available online at https://jupyter.org/about,
checked on 09/20/2023.

Rauch Gedeon. Was ist Jupyter Notebook? // Dev-Insider. 2022.
Richey Melonie K. Scalable Agent-Based Modeling of Forced Migration. Fairfax, 2020.
Modeling population displacement in the Syrian city of Aleppo. // . 2014. 252-263.

Specification O. M.G. Adopted. United Modeling Language 2.0 Proposal. 2003. Avail-
able online at https://sparxsystems.com/bin/UML2SuperStructure.pdf,
checked on 09/30,/2023.

StatisticsHowTo . Mean Absolute Percentage Error (MAPE). 2022. Available online
at https://www.statisticshowto.com/mean—absolute-percentage-
error—-mape/, checked on 10/13/2023.

Suleimenova Diana, Bell David, Groen Derek. A generalized simulation development

approach for predicting refugee destinations // Scientific reports. 2017. 7, 1. 13377.

Thibos Cameron. Half a Country Displaced: the Syrian Refugee and IDP Crisis // IEMed
(ed.), IEMed Mediterranean Yearbook 2014, Barcelona : IEMed, 2014. [Migration
Policy Centre|. 2014. 54-60.

UNHCR . Syria Refugee Crisis Explained. 2023. Available online at https://
www.unrefugees.org/news/syria-refugee-crisis—-explained/, checked

on 09/19/2023.

Xiaorong Xiang , Ryan Kennedy , Gregory Madey , Steve Cabaniss . Verification and
Validation of Agent-based Scientific Simulation Models // Agent-directed simulation
conference. 47. San Diego, 2005.

xUnit.net . About xUnit.net. 2023. Available online at https://xunit.net/, checked
on 10/13/2023.

78

https://jupyter.org/about
https://sparxsystems.com/bin/UML2SuperStructure.pdf
https://www.statisticshowto.com/mean-absolute-percentage-error-mape/
https://www.statisticshowto.com/mean-absolute-percentage-error-mape/
https://www.unrefugees.org/news/syria-refugee-crisis-explained/
https://www.unrefugees.org/news/syria-refugee-crisis-explained/
https://xunit.net/

Erklarung zur selbststandigen Bearbeitung

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne fremde Hilfe selbstdndig
verfasst und nur die angegebenen Hilfsmittel benutzt habe. Wortlich oder dem Sinn

nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich

gemacht.

Ort Datum Unterschrift im Original

79

	List of Figures
	List of Tables
	Introduction
	Goal
	Structure Outline

	Sociological Background
	Syrian Refugee Crisis
	Behavioral Theory

	Materials And Methods
	Reference Model Description
	Location Nodes
	Refugee Agents
	Update Behavior
	Input Data
	Calibration

	Agent-based Modelling
	The MARS Framework
	Data Preparation and Analysis Tool: Jupyter Notebook

	Requirements
	Replication Requirements
	Migrant Agent Requirements
	Locations Requirements
	Model Requirements

	IDP Simulation Requirements

	Conceptual Model
	Design For Implementation in MARS
	Migrant Component
	Map
	Relationship Between The Components
	Data Integration
	Model Output
	Model Configuration
	Simulation Mode

	Implementation Details
	Migrant Component
	MigrantLayer Implementation
	MigrantAgent Implementation

	Map Component
	Camps and Conflicts
	PopulationLayer
	LocationLayer
	Location Vector Feature

	Data Sourcing and Preparation
	Data Sourcing
	Data Preparation

	Verification And Validation
	Verification
	Validation
	Validation of Syrian Refugees in Turkey Simulation
	Validation of IDPs' Simulation

	Scenarios
	Scenario Description
	Scenario 1: Administrative Level 1
	Scenario 2: Administrative Level 2
	Scenario 3: Administrative Level 3
	Scenario 4: Routes Prediction

	Results
	Results of Scenario 1
	Results of Scenario 2
	Results of Scenario 3
	Results of Scenario 4

	Discussion
	Analysis of Model Utility for Humanitarian Actors
	Sources of Error in the Model

	Conclusion and Next Steps
	Bibliography
	Declaration of Authorship

