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Abstract
This thesis is concerned with the implementation of theories of human behavior as well as
an agent architecture informed by domain expertise in an agent-based model written in
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Kurzzusammenfassung

Diese Arbeit befasst sich mit der Implementierung von Theorien menschlichen Verhaltens
sowie einer durch Domänenexpertise informierten Architektur in einem agentenbasierten
Modell, welches in MARS geschrieben ist. Zur Identifizierung, Einordnung und Auswahl
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der Theorien wurde ein konzeptionelles Modellierungsrahmenwerk namens HuB-CC ver-
wendet. Der Modellansatz ist in einem interdisziplinären Austausch mit den Autorinnen
des HuB-CC Frameworks entstanden. Die Modellergebnisse sowie die Güte der entwor-
fenen Architektur werden analysiert und mögliche Vertiefungsrichtungen dieser Arbeit
werden erörtert.

iv



Acknowledgements

I would like to thank my first supervisor, Professor Thomas Clemen, for giving me the
initial impulse that I needed to formulate the research question of this work and for
consistently offering guidance throughout the development and writing process.

Likewise, I wish to thank my second supervisor, Professor Maja Schlüter, for helping me
appreciate the interdisciplinary aspect of this work, facilitating an invaluable connection
between me and the other co-authors of the HuB-CC framework, and offering insights
and assistance on numerous occasions.

I would also like to thank Professor Sara Constantino and Professor Elke Weber for
your support while I was sharpening and specifying the research question. The insights
I gained through our conversations helped me to better navigate the domain-specific
portions of this work.

I also wish to thank everyone at the MARS Group who contributes to the continued
development of the modelling framework used for this work. Your efforts make works
like the present one possible.

Lastly, I thank my parents. You have loved and supported me unconditionally and
wholeheartedly since before I can remember and continue to do so beyond what I feel I
deserve. I am grateful for having you in my life.

v



The real question is not whether machines think but whether men do.

The mystery which surrounds a thinking machine already surrounds a thinking man.

—B.F. Skinner (1969)

Contingencies of Reinforcement: A Theoretical Analysis
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1 Introduction

Human decision-making and behaviour is complex and understanding it better is of
significant interest, as indicated by various scientific conferences and research studies that
are dedicated to its analysis in different contexts (e.g., [13, 32, 42, 28]). Since humans
have evolved to produce massive communities and social networks that span the Earth,
it is apparent that the impact of their behaviour on themselves and on their environment
is far-reaching [20, 3]. While studying human behaviour in the field (i.e., with real-
world research subjects) might be the greatest potential source of insight into its nature
and patterns, such studies can be time-intensive, expensive, difficult to coordinate, and
prone to subjective influences from both the researchers and the subjects [22, 39]. There
appears to be a need for and a benefit in exploring alternative, yet similarly promising
ways of inquiry.

Over the last several decades, the study of human behaviour has experienced an increase
in the use of computer-driven and automated models as analytical tools. This trend can
be observed across many scientific disciplines and research areas, and is fuelled by an
increasing abundance of technical innovation and computational power. While there are
several types of modelling approaches, the agent-based modelling paradigm has received
wide-spread attention for its ability to describe the individual and collective behaviour
of a group of agent instances, each acting autonomously within a given environment
[1, 17, 21, 30]. Such models have been developed in the context of food security [14],
infectious disease [11], traffic planning [27], and disaster management [12], among many
others. All of these examples, by virtue of their respective domain, are focused on mod-
elling the behaviour of humans. However, in many cases, the assumptions and premises
underlying these models tend to be too static and low-faceted to adequately describe the
dynamic and varied behaviours of humans [33]. In models of Social-Ecological Systems
(SES), particularly, the behavioural logic of human agents is often based on the theory
of Rational Choice. According to this theory, a human actor’s sole motivation when
weighing options and making decisions is the optimisation of personal utility, i.e., the

1



1 Introduction

maximisation of some quantity that is of personal interest to her [40, p. 8–9]. While
such a single-minded motivation might apply in some cases, empirical evidence strongly
suggests that decision-making processes are far more nuanced in their considerations
[32, 24]. One idea for improving ABM that involve human actors is to integrate insights
from theories of human behaviour into them [34]. The intention is to enable agents to
more closely represent their real-world counterparts.

This thesis describes the integration of three theories of human behaviour into an ABM.
The main focus is on the selection of a well-suited model scenario, the identification of
applicable theories of human behaviour, and the design as well as the implementation
of the agents’ structure and behavioural routine. The research question is how well the
theories can be integrated into the model – given the available tools and means – and
how they manifest themselves in the agents’ behaviour upon executing the model. To
facilitate this effort conceptually, the HuB-CC framework is used. This is a framework for
human behaviour modelling that aims to inform design choices of modellers by offering
a theoretical foundation. Furthermore, it provides a way to systematise the modelling
process by stratifying the human decision-making process into distinct cognitive com-
ponents and suggesting relationships between them. An overview of these concepts is
provided in this thesis. For the technical realisation, the MARS framework is used. This
is an agent-based modelling framework that uses Object-Oriented Programming (OOP)
to write models. The descriptiveness and some of the structural capabilities of the OOP
paradigm will be explored with respect to the agents’ internal structure.

Thesis Outline The outline for the remainder of this thesis is as follows. Chapter 2
explores related works and concepts that are deemed relevant for the subsequent chapters.
Chapter 3 outlines the domain-specific and technical requirements of the intended model.
Chapter 4 describes the MARS framework, the HuB-CC framework, the conceptual basis
of the model, and the theories chosen to model the agents’ behaviour. Chapter 5 describes
in detail the design and implementation process of the model as well as the formalisation
of the theories and their integration into the model. Chapter 6 illustrates the functionality
of the model by presenting model outputs and results. Lastly, Chapter 7 offers a critical
discussion of the results, an analysis of the implemented agent structure, a general review
of the chosen approach (particularly with respect to its interdisciplinary nature), and an
outlook to potential next steps that might follow this work.
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2 Concepts and Related Work

As mentioned in Chapter 1, human behaviour modelling has become increasingly popular
in the behavioural and social sciences. The agent-based modelling paradigm has received
particularly high attention. However, there are also other modelling approaches that
should at least be mentioned briefly in this work. This section gives a general overview
of some of these approaches and outlines the conceptual framework for the remainder of
the thesis.

The exercise of modelling human behaviour encompasses the description of character-
istics of that behaviour in calculable and executable models. By using such models,
researchers wish to study and analyse properties of human behaviour to develop a bet-
ter understanding of it. Insights gained during the modelling process and from model
outputs can, ideally, be transferred to recommendations for actionable change in the real
world. Models of SES, for example, study the impact of human behaviour on the natural
environment. A particularly acute application of models of SES is the identification of
individual and/or communal behaviours that might facilitate or hinder the achievement
of sustainability and climate change goals.

There are different types of models from different disciplines that can serve such a pur-
pose. Systems theory [23], for example, tries to model human behaviour as a set of
differential equations, where solutions of the system fulfil all equations simultaneously
and represent some desirable system state. In control theory [38], a Markov Reward
Process (MRP) can be used to model a chain of states that are connected via transitions,
each of which is associated with a reward. The solution to such a system involves a path
through the states that maximises a reward function. A MRP can be extended to become
a Markov Decision Process (MDP) by adding a set of possible actions to the system. An
agent that navigates such a system has these actions at its disposal and must choose
them in such an order so that, again, a given reward function is maximised. A performed
action is indicative of decision made by the agent: if an agent in a given state has two
options and chooses one over the other, that choice reveals a decision and a preference
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2 Concepts and Related Work

regarding the state-action pairs that are available to the agent in its current state. MDPs
can therefore be used to model decision processes and preference patterns.

The use of game theory [40] has been especially popular in economic models to study
the rationale for certain decisions in economic transactions. A game-theoretic model is a
model in which rational agents are required to maximise some function while engaging in
strategic interactions with other rational agents. To converge to a solution, agents need
to find a system equilibrium. Due to the involvement of strategic interactions, game
theory lends itself to modelling cooperative and competitive settings as well as other
settings that required some form of negotiation between different actors. While game-
theoretic models have seen widespread application, the use of rational agents has been
criticised for not adequately capturing the possible considerations that human decision-
makers might make in different contexts. Rationality is defined here as acting in one’s
own self-interest. Therefore, a rational actor, as mentioned in Chapter 1, is one that acts
in its own self-interest. In game-theoretic settings, this translates to maximising personal
utility – typically at the cost of all other factors.

Since its conception, the theory of Rational Choice has been augmented in a few ways.
One prominent extension was made by Herbert A. Simon, who defined the theory of
Bounded Rationality1 [36]. Like the theory of Rational Choice, this theory is concerned
with describing evaluation and decision processes of a rational actor. But it takes into
account that such an actor is in some way limited. The limitations are imposed either by
the intrinsic nature of the agent, the environment the agent is situated in, or both. With
the advent of Multi-Agent Systems (MAS) and ABMs, an opportunity presented itself to
model more realistic human agents. One reason for this is that these systems and models
are part of the overarching concept of Distributed Artificial Intelligence (DAI): a family
of intelligent systems in which intelligence is not centralised (i.e., located at one and only
one location), but rather virtually or physically distributed across multiple entities. The
decentralisation of intelligence enables the possibility of implementing bounded agents
(i.e., ones with incomplete knowledge and/or capabilities) and possibly ones that do not
act rationally under all circumstances.

As indicated in Chapter 1, ABMs are used in a wide range of fields and disciplines to
study different behavioural phenomena. This thesis focuses on the application of ABMs to
model SES. In this domain, ABMs have recently been used to model irrigation games [25],
pastoral systems [16], and fisheries [42], among others. At the conceptual level, ABMs

1A more detailed elaboration of this theory is given later in the thesis.
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2 Concepts and Related Work

have been used to, for example, compare different formalisations of the same conceptual
behaviour description (rational and altruistic) [29]. The notion of incorporating aspects
from theories of human behaviour is common to all of these research efforts. To this end,
the theories need to be formalised [34]. This means that the usually informal descriptions
in which the essence of the theory is conveyed need to be transformed into a form that
lends itself to being used for creating a design and an implementation plan for software
agents.
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3 Requirements

This Chapter features a list of functional and non-functional requirements of the model
that is implemented for this thesis. The requirements are derived from the outline of
the goal presented in Chapter 1 and the main concepts and related works presented in
Chapter 2.

1. Identify a model basis: Since one of the goals of this work is to implement a
model of a SES, a conceptual foundation is required from which the rules, proper-
ties, and agent tasks of the model can be derived. Without such a foundation, the
intended model would need to be designed freely and based on intuition.

2. Theories of human behaviour: This exercise is aimed at modelling human
behaviour in a theory-driven fashion. Hence, a set of theories of human behaviour
needs to be identified which is suitable for describing the behaviours that agents
need to engage in in the model.

3. Theory formalisation: As mentioned in Chapter 2, the theories of human be-
haviour need to be formalised in order to enable their implementation within an
agent’s behavioural routine. Without a formalisation, the elaborations made in
most theories of human behaviour are expected to be too vague and informal for a
modeller to be able to derive meaningful guidelines for the design and implement-
ation of agents from them.

4. Application of the HuB-CC framework: One of the goals of this work is to use
a conceptual framework for modelling human behaviour. The HuB-CC framework
satisfies this requirement. Its stratification of the human cognition and decision-
making process into elements as well as the mapping of theories to those elements
needs to be used for theory selection as well as to inform the agents’ internal
structure.1

1A more detailed description of the framework is given later in the thesis.
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5. Comparability of theory implementations: One of the motivations of im-
plementing theories of human behaviour in agents is to be able to compare the
behaviours of agents as a result of the theories. Therefore, the model needs to be
developed in such a way as to enable an exchange of theories that guide the agents’
decision-making and behaviour.

6. Interdisciplinarity: The conceptual part of this thesis is carried out with the help
of domain experts. Therefore, the resulting model and theory implementations are
required to be satisfactory from a domain expert’s point of view.

The satisfaction of these requirements is tracked in the remainder of the written thesis.
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4 Methods and Materials

The requirements formulated in Chapter 3 will be carried forward through the remaining
chapters of this thesis. In this chapter, an overview of the methods and materials used
for the subsequent design and implementation of the model is given. First, the MARS
framework is described to illustrate the technical aspects of this work. This is followed
by a description of the HuB-CC framework, which provides the conceptual frame within
which the agents are designed. Next, the conceptual basis of the model is outlined,
followed by the selection of theories of human behaviour.

4.1 The MARS Modelling Framework

The MARS modelling framework is a research project that is under ongoing development
by the MARS Group at the University of Applied Science Hamburg (HAW Hamburg).
Made up primarily of computer science students, the group is interested in bringing
the tools and methods of computer science to other disciplines to create ABMs in in-
terdisciplinary settings. The key motivation lies in creating synergistic effects, allowing
researchers from different domains to learn and benefit from each other’s expertise. Pre-
vious models were set in the domain of ecology, urban planning, traffic modelling, and
public health, among others.

The MARS system is written in C Sharp (C#), a multi-paradigm programming language
that was chosen by the MARS Group primarily to facilitate a hierarchical inheritance
structure – as is common in OOP – of various abstract and non-abstract agent types
and environment types. C# is fully supported by the cross-platform software framework
.NET. As such, models that are written in MARS can be developed and executed on
all common operating systems. The current version of the MARS runtime system is
available in the form of a NuGet package. Installing the package in an Integrated De-
velopment Environment (IDE) – most notably Rider by JetBrains, which fully supports
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4 Methods and Materials

.NET projects – enables developers to access its functionality and create their own mod-
els using C# and the available abstractions of agent types, entity types, and layer types.
For further details, please see the MARS framework documentation.1

A typical ABM written in MARS features three key concepts. A brief overview of these
concepts is offered below.

Agents An agent is an autonomous software instance and an active participant of an
ABM simulation. In MARS, each instance of an agent type is executed by a thread.
This enables the concurrent execution of behaviour routines of multiple agents. Unlike
in sequential execution settings, this gives MARS agents the ability to interact with and
influence their environment as well as each other simultaneously. The typical complica-
tions that can arise at and during runtime as a result of concurrency are handled by the
MARS framework.

Entities An entity is any passive object that can be used in some way by an agent as
a resource. Most recently, the MARS entity concept was employed in agent-based traffic
models to represent vehicles, particularly cars and bicycles [41, 26, 27, 9].

Layers A layer is a section of a MARS model’s environment. It usually encompasses
objects and/or information of the environment that belong to the same class or category.
Depending on the model, a layer can be spatially referenced. For instance, in an ecology
model that involves trees, the environment’s trees can be contained within one layer.
Likewise, in a traffic model, a layer might comprise the environment’s traffic network.
In most cases, layers provide information for agents to interact with and structures for
entities to situate themselves in. However, layers can also be without spatial reference.
In that case, their functions tend to be administrative: spawning agents at the beginning
of a simulation, holding resources for agents during a simulation, and de-spawning agents
at the end of a simulation.

The MARS layer concept has been the focus of several recent research projects and
is therefore particularly advanced. Spatially referenced layer types can integrate Geo-
graphic Information System (GIS) data that enrich a model with real-world geo-referenced
information [19]. Provided that the pertinent data are available in a workable form, they

1https://mars.haw-hamburg.de/
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4 Methods and Materials

can be used to develop ABMs with real-world reference frames. This can be especially
promising for studying the behaviour of individuals in a specific environment. In compar-
ison, the agent concept in MARS appears to be less sophisticated. At the technical level,
the functionality required to develop reliable and performant ABMs is given. However,
the internal structure of agents has room for improvement and expansion. It stands to
reason that modelling the internal structure of an agent – that is usually intended to
represent a living being – based on expertise from domains that study such structures
can provide benefits to the expressiveness and efficacy of ABMs in MARS.

4.2 The HuB-CC Framework

The HuB-CC framework [10] is a conceptual tool that promotes theory-driven behaviour
modelling. It is based on the Modelling Human Behaviour (MoHub) framework [33],
which was developed by sustainability researchers for integration in natural resource use
models – ABMs, among others – that aim to better understand the impact of human
behaviour on meeting sustainability goals. The HuB-CC framework was designed by an
interdisciplinary team of psychologists and sustainability researchers to systematize and
inform modelling processes and to aid experimental and empirical researchers of SES in
the field. To do so, the framework combines two components – elements and theories
– that are described briefly in the following subsections.

HuB-CC Elements The HuB-CC framework features a set of elements that comprise
the internal components of a human actor’s decision-making process – from the percep-
tion and interpretation of external stimuli to the choice of a specific behaviour which
is expressed to the environment. The elements are Perception, Attention, Learning and
Updating, External Information Search, Memory Search, Valuation, Choice, Behaviour,
Stable Characteristics, Situational Characteristics, and the Social and Biophysical Envir-
onment. While a detailed elaboration on all elements is beyond the scope of this work,
a brief description of each can be found in the glossary. In Figure 4.12, a schematic
representation of the elements is shown.

2In the original diagram, there is an undirected association between Valuation to Choice. For this thesis,
it was replaced with an arrow. This is to indicate that, in the implemented model, the relationship
between Valuation and Choice is strictly feed-forward.
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Social and Biophysical Environment

Human actor

Expression of chosen 
behavior to external 

environment

Voluntarily and 
involuntarily perceived 

sensory inputs

Information 
perceived due to 
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Learning 
and Updating Attention
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Memory 
Search

Stable 
Characteristics 
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- Representation of values 
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- Active assets

External 
Information 

Search

Figure 4.1: A schematic illustration of the elements of the HuB-CC framework (adapted
from [10]).

Each element serves a specific role in the overall cognitive process. Based on its role,
an element is shown to be associated with other elements. For example, the element
Valuation is the process is evaluating a range of options to identify their desirability [10].
Hence, its output – a range of preferences, each corresponding to an option – is the input
of the element Choice, which chooses an option from a range of possibilities under certain
criteria [10]. In general, the framework indicates a division of labour and responsibilities
among the elements as well as some degree of sequentiality in the cognitive processes.
Furthermore, it should be noted that the human actor shown in Figure 4.1 is embedded
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4 Methods and Materials

in a Social and Biophysical Environment along with many other human actors. Actors
form implicit and explicit connections via the elements Perception, External Information
Search, and Behaviour. It is conceivable that a set of agents in an ABM might be made
up in a similar fashion.

Theories of Behaviour The authors of the HuB-CC framework have aggregated 31
theories of human behaviour. Each theory has been mapped to the HuB-CC elements in
an effort to describe the theory’s scope and focus. For example, a theory can be mapped
to Valuation and Choice. This might inform a modeller that the theory could serve useful
in devising a formalization for agents of an ABM that, by design, is particularly interested
in studying the agents’ evaluation and choice process. Likewise, a theory that maps to
Memory Search could help design agents with search and lookup mechanisms that are
similar to those of humans – including a way to account for the occasional forgetfulness
and inaccuracies that are typically foreign to computers.

While the examples for applications of the framework given in the paper are limited in
context to natural resource use, the authors state that the framework is expressive enough
to be applicable in a wide range of settings. In general, both the HuB-CC framework
and the MoHub framework aim to bridge the language gap and knowledge gap between
domain experts and behaviour modellers. Using frameworks such as MoHub and HuB-
CC, the insights of such theories can be applied by modellers to a given behavioural
model to inform the design and structure of the model’s agents. The authors offer two
general use cases for in which modellers or researchers might benefit from applying the
framework. Both use cases start with an observation of some behaviour of interest. A
brief description of each use case follows.

• HuB-CC Use Case 1: The modeller or researcher might be aware of – and
possibly understand at an intuitive level – some of the aspects (elements) of the
decision-making processes that result in the observed behaviour. But the theoret-
ical underpinnings that would explain the behaviour at a formal level are missing.
But such a level of understanding is often required to design robust behavioural
models. The modeller can consult the HuB-CC theory map to identify theories that
– based on the HuB-CC elements that map to them – might explain the behaviour
of interest.

• HuB-CC Use Case 2: Rather than being aware of potential underlying processes
that might explain the observed behaviour, the modeller might be aware of a few
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candidate theories that might explain it. In this case, the modeller can use the HuB-
CC theory map as a means to compare theories based on the HuB-CC elements
that map to them. Such a comparison might help narrow down the theory selection
process and enable the modeller to make a more informed decision.

4.3 Model Basis

In this section, the conceptual basis of the model that is designed for this thesis is
described. First, however, the term Common-Pool Resource (CPR) game needs to be
defined. A CPR game is a turn-based game in which, based on a set of rules, each
player can extract a resource (usually a natural resource like wood, fish, etc.) from a
common environment. The resource has some regrowth or reproduction rate, enabling
the players to extract it over a number of rounds. Typically, the goal of such a game is
twofold. On the one hand, each player aims to extract as much of the resource as possible
for personal profit. On the other hand, the community must prevent the resource from
becoming fully depleted. Therefore, the players need to to strike a balance between
individual and collective interests.

Game Description

The model implemented for this thesis is a recreation of a CPR game that was played
during a field study of a Colombian fisher community [31]. This serves as the model
basis and addresses one of the requirements stated in Chapter 3. As described in the
paper, the game requires fishers to extract fish from a common pool, similarly to the
notion described in the previous paragraph. Since the game’s core mechanic involves
natural resources extraction, the behaviours displayed by its players are expected to be
well-suited for being modelled with the HuB-CC framework (see Section 4.2). A game
involves a group of four fishers and lasts 16 rounds. Each round represents a day of
fishing and consists of the following sequential routine:

1. Information: The fishers are told the current fish population size and reproduction
rate.

2. Communication and Deliberation: The fishers have some time to consider
possible actions and/or talk to each other. They may coordinate with each other,
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devise cooperative strategies, and even disclose their intended fishing goals to one
another. They may also choose not to communicate with each other.

3. Decision: Each fisher individually and privately makes a final decision on her
fishing goal. The goal can be freely defined and is not constrained by any rules or
limitations. The goal is never disclosed to the other fishers.

4. Action: If enough fish are currently in the common pool to satisfy the fishing
goals of all fishers, then that number of fish is extracted from the common pool
and distributed accordingly. Otherwise, the available number of fish is distributed
among the fishers proportionally to their fishing goals.

At the beginning of round 1, the fish population size is 50. Figure 4.2 shows the repro-
duction dynamics of the fish population.3
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Figure 4.2: Baseline reproduction dynamics of fish population (adapted from [31]).

The game can be played in four variations, each representing a treatment in the study.
In all variations, the fish population size is restored to 50 at the beginning of round
7. Figure 4.2 shows the reproduction dynamics that apply throughout the Control
treatment. Alternatively, there are three other treatments – Threshold, Risk, and
Uncertainty. In these treatments, the baseline reproduction dynamics shown in Figure

3For details on the biological rationale for the rate distribution, please see [31].
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4.2 apply from round 1 to round 7. However, from round 7 onward, a climate event can
occur with some probability that depends on the treatment:

• Threshold: a climate event occurs at the beginning of round 7 with 100% prob-
ability.

• Risk: a climate event occurs at the beginning of any round between round 7 and
round 16 with 50% probability per round.

• Uncertainty: a climate event occurs at the beginning of any round between round
7 and round 16 with a probability between 10%-90% that is recomputed per round.

Figure 4.3 shows the altered reproduction dynamics as a result of a climate event. The
reproduction rate of the fish population decreases substantially when the population size
is between 5 and 28. This increases the challenge of extracting fish while preventing
extinction of the fish population. Once a climate event has occurred, its impact on the
reproduction dynamics lasts for the remainder of the game.
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Figure 4.3: Treatment reproduction dynamics of fish population (adapted from [31]).

Player Knowledge

An important consideration when modelling such a game as an ABM is player knowledge.
Specifically, it is important to track what is knowable to which player at what time.
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Agents in an ABM can be modelled as omniscient beings. But an all-knowing agent would
not make for an apt representation of a human. Therefore, constraining the knowledge
base of agents can make for a more realistic model. In the model implemented for this
thesis, the information in [31] about what is known and unknown to the players of the
CPR game is used as a basis for constraining the agents’ knowledge base. The following
list contains a summary of that information:

• Players know the population size at all times.

• Players know the reproduction rate at all times.

• Players do not know each other’s fishing goal decisions.

• Players do not know the number of rounds a game lasts.

• Players do not know which variation of the game they play.

• Players do not know the range of rounds during which a climate event can occur.

4.4 Behavioural Theories

To model the behaviour of players of the CPR game (see Section 4.3), the HuB-CC
framework is consulted. Specifically, a small subset of the 31 available theories is chosen.
This choice is made such that the subset of HuB-CC elements that the theories map to is
considered to be able to adequately describe the main decision-making processes that are
thought to take place while playing the CPR game. In this section, the chosen theories
are described. They serve to address one of the requirements stated in Chapter 3.

Bounded Rationality The theory of Bounded Rationality is an extension of the the-
ory of Rational Choice [35]. It was proposed by the social scientist Herbert A. Simon in
1957 [36]. Both theories describe human decision-making processes as being determined
exclusively by the maximization of personal utility. The theory of Bounded Rationality
additionally takes into account that human knowledge and capability for information
processing is bounded (i.e., limited). On the one hand, there are intrinsic bounds such
as the nature and computation power of the human brain. On the other hand, there are
extrinsic bounds, such as aspects of the environment that are unknowable at the time of
decision-making because the environment cannot provide them.
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With respect to modelling human behaviour, Simon suggests a few of ways to "bound"
an agent’s decision-making processes [37]:

• Include a component of risk and/or uncertainty in the model

• Give an agent incomplete information about alternatives

• Add complexity to the model so great that the agent is unable to compute an
ideal course of action deterministically and is instead forced to approximate it
stochastically

In the context of Bounded Rationality, the act of Satisficing is often mentioned: foregoing
a choice that might yield a high short-term reward in favour of a potentially higher long-
term reward. This kind of decision-making usually takes hold when the decision-maker
has incomplete information. The term aptly captures the dilemma that is prevalent in
CPR scenarios: when the amount of resources is low, the extraction behaviour must
be more conservative than when resources are plentiful. On the one hand, this implies
a smaller short-term profit. On the other hand, it reduces the probability of complete
depletion, thereby increasing the probability of higher long-term profit. According to
Bounded Rationality, Satisficing is often paired with optimizing as the Satisficing human
still seeks to maximize personal utility, but does so while considering external factors.

Table 4.1 shows the mapping devised by the HuB-CC framework between the theory of
Bounded Rationality and the HuB-CC elements.
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Table 4.1: Mapping between theory of Bounded Rationality and HuB-CC elements
(adapted from [10])
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The theory of Bounded Rationality maps to the elements Valuation and Choice. This is
because it proposes a model only for how humans evaluate potential actions under given
circumstances and for how an action is chosen. The theory does not make descriptions
of other aspects of the human decision-making process (as laid out by the elements of
the HuB-CC framework). While it does mention, for example, the potential influence
of environmental factors on the decision-making process (which might fall under Social
and Biophysical Environment), it does not elaborate on these factors in a way that might
inform the description of the environment of an ABM in which agents are required to work
with incomplete information. The theory is considered to be well-suited for modelling the
chosen CPR game (see Section 4.3) because its players are required to maximize utility
while preventing resource extinction while given incomplete information.

Trust and Reciprocity The theory of Trust and Reciprocity [4] proposes a model
for how the two traits trust and reciprocity factor into a one-time, two-way transaction
between two individuals who do not know each other (i.e., are interacting with each other
for the first time). The authors observe that many economic theories assume that indi-
viduals act in their own self-interest – in line with the theory of Rational Choice. In such
theories, a deviation from behaviour that is not in the actor’s self-interest is viewed as
irrational. However, in group settings, there exist situations where self-interested beha-
viour impacts all group members – even the actor – negatively, implying that irrational
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behaviours might sometimes be advantageous. Since individuals who exhibit such beha-
viours rely on the notion that a foregone short-term benefit will be compensated by a
long-term benefit (a reciprocation), they require a degree of trust in other participants
of the transaction.

The authors propose that trust is a so-called economic primitive: a trait that can be
expressed by participants of an economic transaction regardless of previous experience
with and even knowledge about the other participants.4 The transaction is formally
described as follows. A trustor X performs an action by which she places a trust in a
trustee Y , who can break the trust by not reciprocating the action or keep the trust by
reciprocating the action. In other words, X puts herself at risk by giving Y the right to
make a decision, and Y makes a decision that affects both X and Y . In summary, trust
is the act of exposing oneself in a transaction to the consequences of actions of the other
participant. Reciprocity is the act of choosing an action that benefits both participants
of the transaction.

Table 4.2 shows the mapping devised by the HuB-CC framework between the theory of
Trust and Reciprocity and the HuB-CC elements.

Table 4.2: Mapping between theory of Trust and Reciprocity and HuB-CC elements
(adapted from [10])
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4The term "primitive" is reminiscent of primitive data types in computer science. These are built-in,
low-level data types and serve as basic building blocks of a programming language. Analogously,
the suggestion that trust is an economic primitive implies that it is a core trait of humans that is
intrinsically present and does not first need to be assembled/composed by other primitives.
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The theory maps to the elements Perception, Valuation, Choice, Stable Characterist-
ics, and Social and Biophysical Environment. The elements Perception and Social and
Biophysical Environment are included because the theory describes a transaction, i.e., a
process which involves the intake of information (Perception) from another individual in
the (social) environment. Since X and Y each have to make a choice between two options
– to trust or not to trust and to reciprocate or not reciprocate, respectively – they must
also evaluate the desirability of those choices. This accounts for Valuation and Choice,
respectively. Finally, the theory considers trust to be an economic primitive, making it
a trait that is permanent and not prone to (spontaneous) change. This accounts for the
element Stable Characteristics.

In the CPR game (see Section 4.3), players can choose to communicate or not commu-
nicate with each other. The act of communicating can be viewed as placing a trust in
the recipient of the communicated information. Likewise, players can choose to adhere
to the fishing goal that was disclosed during a communication or to change their mind in
private and deviate from that disclosed goal. The act of adhering to the disclosed fishing
goal (i.e., the act of not lying) can be viewed as an act of reciprocity. It contributes an
act of honesty to the community, thereby preserving trust within the community.

Social Norms The theory of Social Norms [6, 8] is a theory that establishes a con-
nection between norms at the societal level and expectations at the individual level. A
social norm is defined as a rule of behaviour such that individuals prefer to conform to
it [5]. This preference is conditioned on two types of social expectation. The first type is
called empirical expectation, which is an individual’s belief that most people in her
network conform to the rule of behaviour. The second type is normative expectation:
an individual’s belief that most people in her network believe that she should conform to
the rule of behaviour. According to the theory of Social Norms, both types of expectation
must be high in order for the individual’s preference to be sufficiently high to conform
to a given social norm.

According to Cristina Bicchieri, the author of this theory, social norms have been studied
extensively and in many different contexts. But the definitions used to describe social
norms are often not operational (i.e., not measurable). One of the key motivations
in developing the theory of Social Norms was to be able to identify social norms in a
given community and measure the extent to which they are followed by members of that
community (for example, see [7]). Since the theory defines social norms to be closely
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linked to social expectations, it proposes that collective expectations of a community can
be moderated by tapping into the social norms of the community. Expectations, in turn,
are linked closely to behaviour. Therefore, in summary, the theory of Social Norms is used
to identify norms and the expectations that community members associate with them
in order to change individual behaviour in some desirable manner. Applications of the
theory have shown empirically that changing either empirical expectations or normative
expectations or both at a sufficiently large scale results in changes in collective behaviour
[8].

Table 4.3 shows the mapping devised by the HuB-CC framework between the theory of
Social Norms and the HuB-CC elements.

Table 4.3: Mapping between theory of Social Norms and HuB-CC elements (adapted
from [10])
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This theory maps to the same elements as the theory of Trust and Reciprocity does,
with the additional element of Situational Characteristics. This is because empirical
expectations and normative expectations are said to be dynamic traits that can change
readily over time, depending on societal trends that an individual perceives. The HuB-
CC framework distinguishes between stable representations of social norms – which are
part of an individual’s Stable Characteristics and are relatively persistent over time – and
salient representations of social norms – which are influenced by current circumstances
and usually a derivation of the stable representation.
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The field study described in Section 4.3 [31] played the CPR game with members of a
Colombian fisher community. It stands to reason that this community has a set of social
norms that are based on their craft, trade, and other local and social factors. However,
the paper does not describe such aspects of the community, likely because the study was
not focused on them. It appears that the community was approached to play the CPR
game more for their domain expertise (fishing) than for their community’s attributes.
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5 Design and Implementation

After identifying the requirements (see Chapter 3) and gathering and understanding the
necessary methods and materials (see Chapter 4) for this project, the intended model can
be described. This chapter begins with a structural description of the model, covering
the classes and components that comprise it. This is followed by formalisations of the
theories described in Section 4.4. The formalisations form the basis of the agents’ internal
structure and behaviour routine, which is outlined in the subsequent two sections. Lastly,
some additional implementation details and considerations are touched on.

5.1 Model Description

In this section, the structure of the model that was implemented for this thesis is de-
scribed. The description is organised in a top-down fashion, first highlighting the broad
and general structural model components before gradually honing in on pertinent de-
tails.

Layer Types

Figure 5.1 shows the environment of the model.
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«Layer»
Village

+ FisherMap : IDictionary<Guid, Fisher>
+ FacilitatorMap : IDictionary<Guid, Facilitator>
+ FishingGoals : ConcurrentBag<int>
+ FishingPlace : FishingPlace
- _simulationContext : ISimulationContext

+ InitLayer(LayerInitData, RegisterAgent, UnregisterAgent) : bool
+ GetCurrentTick() : long

«Layer»
FishingPlace

+ FishPopulationMap : IDictionary<Guid, FishPopulation>
+ WeatherMap : IDictionary<Guid, Weather>
- _simulationContext : ISimulationContext

+ InitLayer(LayerInitData, RegisterAgent, UnregisterAgent) : bool
+ YieldFish(int) : int
+ GetCurrentTick() : long

1

1

Figure 5.1: Class diagram showing the layer types of the model

The environment consists of two layer types: Village and FishingPlace. The Vil-
lage represents the place at which the Fisher agents live. Accordingly, it has a prop-
erty FisherMap in which references to the Fisher agents are held throughout the
simulation. Furthermore, the layer type enables communication between the Fisher
agents via the property FishingGoals. The object of type ConcurrentBag en-
ables the concurrently running agent threads (see Section 4.1 for details) to deposit and
get messages without the simulation encountering concurrency issues. The agent type
Facilitator is responsible for clearing the contents of FishingGoals in between
rounds so that it is ready for the next group communication. Furthermore, the Vil-
lage grants the Fisher agents access to the layer type FishingPlace. The agent
type FishPopulation lives on this layer and a reference to it is held in the prop-
erty FishPopulationMap. Fisher agents can access the FishPopulation via the
method YieldFish(int) to extract a desired number of fish. The agent type Weather
also lives on this layer and can potentially impact the fish population (as described in
Section 4.3).

A simulation of the model features exactly one layer instance of each of the two layer
types. The directed association shown in Figure 5.1 indicates that the Village has a
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reference to the FishingPlace, but not the other way around. The private property
_simulationContext as well as the methods InitLayer and GetCurrentTick

are implemented based on the layer types’ connections to MARS interfaces. A class
diagram that illustrates this connection is included at the end of this section.

Layer Types and Agents Types

To expand on the initial view of the model environment, the agent types are extracted
from the layer types in Figure 5.2 and shown in individual classifiers. For clarity and
legibility, some of the properties and methods of the layer types that are included in
Figure 5.1 are omitted in this diagram.

«Layer»
Village

+ FishingGoals : ConcurrentBag<int>

+ GetCurrentTick() : long

«Agent»
Fisher

+ ID: Guid
+ Name : string
- _mind : Mind

+ Init(Village) : void
+ Tick() : void

«Layer»
FishingPlace

+ YieldFish(int) : int
+ ProcessWeatherEvent(int) : void
+ GetCurrentTick() : long

«Agent»
FishPopulation

+ ID: Guid
+ InitialPopulationSize : int
+ CurrentPopulationSize : int
+ CurrentReproductionRate : int
+ CurrentReproductionDynamics : Dictionary<Range, int>
+ ReproductionDynamicsBaseline : Dictionary<Range, int>
+ ReproductionDynamicsTreatment : Dictionary<Range, int>
- _fishingPlace : FishingPlace

+ Init(FishingPlace) : void
+ Tick() : void
- ReproduceAndUpdateReproductionRate() : void
- GetNewReproductionRate(): int

«Agent»
Weather

+ ID: Guid
+ EventType : int
+ EventProbability : double
+ EventHasOccurred : bool
- _fishingPlace : FishingPlace

+ Init(FishingPlace) : void
+ Tick() : void
- CalculateEventProbability() : double
- TriggerWeatherEvent() : void

1

1

1

1

1

1

1

4

«Agent»
Facilitator

+ ID: Guid
+ BagCount : int
- _village : Village

+ Init(Village) : void
+ Tick() : void

1

1

Figure 5.2: Class diagram showing the layer types and agent types of the model
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A Fisher has a public property Name and a private property _mind of type Mind.
Name is included for easier identification of agents in the output file during manual
review of simulation results. The Mind houses the agent’s decision-making structure
and logic. As mentioned in the description of Figure 5.1, the property FishingGoals

in the layer type Village is used for communication among the Fisher agents. The
Facilitator clears the contents of this collection at the end of each round and tracks
its size in the property BagCount for verification purposes in the simulation output
file.

The agent type FishPopulation has properties to track the fish population’s size
(InitialFishPopulationSize and CurrentFishPopulationSize) and repro-
duction rate (CurrentReproductionRate). The reproduction dynamics are stored
in a Dictionary<Range, int>. In this dictionary, a key is a population size range
within which a reproduction rate is defined, and its value is that reproduction rate
(see Figure 4.2 and Figure 4.3 for diagrams showing the ranges and rates defined in
[31]). The FishPopulation has a method ReproduceAndUpdateReproduction-

Rate(), which increases its PopulationSize by the value determined via the current
reproduction dynamics. As a result of the change in population size, the reproduction
rate might change, which is adjusted by the method GetNewReproductionDynam-

ics().

The agent type Weather has a property EventType, based on which an EventProb-
ability is determined. The value of EventType can be 0, 1, or 2, corresponding to
the three treatments that involve potential climate events (see Section 4.3). The prop-
erty EventHasOccurred tracks whether an event has occurred to assure that a climate
event occurs only once per simulation (as defined by the rules of the CPR game). For
the treatment Risk, the method CalculateEventProbability() determines a new
probability once per round for a climate event to occur. If a climate event occurs, it is
triggered via TriggerClimateEvent().

A simulation of the model features exactly four instances of the agent type Fisher, one
instance of the agent type FishPopulation1, one instance of the agent type Facil-
itator, and one instance of the agent type Weather. All associations between agent
types and their corresponding layer types are undirected because the agent type holds a
reference to the layer type it lives on and, likewise, the layer type holds a reference to

1The fish population is modelled as a single agent for simplicity and because the CPR game explicitly
does not distinguish between different kinds of fish [31].
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the agent types it has spawned in the corresponding property *Map (see Figure 5.1 for
the names of these properties).

Note: The functionality of the Weather agent is fully implemented and the model
is capable of processing climate events and adjusting the reproduction dynamics of the
FishPopulation accordingly. However, during the development of the model, it was
found that the theories selected to model the Fisher agents’ behaviour do not offer in-
sights into how humans behave as a result of incurring an uncertainty or a risk. Therefore,
to avoid speculative behaviour modelling and to adhere to what is given by the theories,
no behaviour related to a change in reproduction dynamics is currently implemented in
the Fisher agents. Consequently, the simulations that were run for this thesis also
do not include the three corresponding treatments (see Section 4.3). This feature can,
however, be activated in the model by uncommenting a few lines of code and creating a
connection from the Weather agent to the Fisher agent via the layer types (removing
the directed association between Village and FishingPlace shown in Figure 5.1).

Connection to the MARS system

To conclude the description of the model’s structure, Figure 5.3 shows the connection of
the agent types and layer types to the MARS system.

«Interface»
IAgent<LayerType>

+ ID: Guid

+ Init(Village) : void
+ Tick() : void

«Interface»
AbstractLayer

- _simulationContext : ISimulationContext

+ InitLayer(LayerInitData, RegisterAgent, UnregisterAgent) : bool
+ GetCurrentTick() : long
+ SetCurrentTick(long) : void

«Agent»
Fisher

«Layer»
Village

«Layer»
FishingPlace

«Agent»
FishPopulation

«Agent»
Weather

«Agent»
Facilitator

Figure 5.3: Class diagram showing the MARS interfaces implemented by the agent
types and layer types of the model

For simplicity, all properties and methods of the implemented agent types and layer type
are omitted in this diagram. The properties and methods required by the interfaces
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IAgent and AbstractLayer provide the technical capabilities necessary to develop
and execute the ABM. The agent type property ID acts as a unique identifier, while
the method Init(LayerType) receives the layer type on which the agent lives and
the method Tick performs a behavioural routine of the agent during each time step
(hereafter referred to as tick) of the simulation. The layer type property _simula-

tionContext is a reference to an object of type ISimulationContext that contains
information about the simulation during its execution time (e.g., the current simulation
tick, which can be requested by agent types by calling the layer type method Get-

CurrentTick()). Finally, the layer type method InitLayer() (the three formal
parameters are omitted here for legibility) is responsible for performing administrative
tasks at the beginning of the simulation, such as registering and spawning agent instances.
(The layer type method SetCurrentTick(long) is implemented as requested by the
interface’s contract; but it is not used in the model).

5.2 Theory Formalisations

In this section, the formalisations derived from the behavioural theories that were de-
scribed in Section 4.4 are outlined. With the model structure (see Section 5.1) and the
formalisations of the theories, the Mind object that was mentioned in the previous sec-
tion as well as the behavioural routine of the Fisher agents can be described. These
formalisation aim to address one of the requirements stated in Chapter 3.

Bounded Rationality By design, the CPR game on which the model implemented
for this thesis is based forces the agents to act rationally within pre-defined and omni-
present bounds. Each agent’s primary goal is to maximize utility, making their behaviour
inherently rational per definition. In addition, based on the information obtained from
[31] about the players’ knowledge base (see Section 4.3), each agent’s knowledge base is
always incomplete. This introduces bounds to their decision-making processes, as defined
by Simon (see Section 4.4). Since the constraints on knowledge are implemented in the
model as they were enforced in the real-world CPR game, the agents can be considered
boundedly rational actors.

Trust and Reciprocity As outlined in Section 4.4, both trust and reciprocity are
Stable Characteristics. According to the HuB-CC framework, this means that their values
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are relatively consistent over time. Since the time frame of the implemented model is
relatively short (16 rounds), a Fisher agent’s trust and reciprocity is implemented each
as a double between 0.0 and 1.0 that is constant throughout the simulation. These
values can be inserted into the simulation via the agent initialization file2. Trust and
reciprocity are positively correlated [2, 15]. Therefore, sensible values for these two
properties are likely to be close to each other.

As outlined in Section 4.4, trust is an act of exposing oneself to the consequences of a
communication partner’s actions. Reciprocity is the act of that communication partner
such that both participants of the communication benefit. During the phase Commu-
nication and Deliberation of the CPR game (see Section 4.3), a Fisher can choose
to communicate or not communicate. The former corresponds to an action rooted in
trust, whereas the latter corresponds to an action rooted in lack of trust. Likewise, dur-
ing the phase Decision, a Fisher can choose to adhere to the fishing goal disclosed to
the other Fisher agents or to increase it. The former corresponds to an act of keeping
the trust (i.e., an action rooted in reciprocity), whereas the latter corresponds to an act
of breaking the trust (i.e., an action rooted in lack of reciprocity). Telling the truth
benefits the community, whereas not telling the truth (by increasing the fishing goal)
benefits only the individual.

Based on the rules of the CPR game (see Section 4.3), a Fisher agent has enough
information in its knowledge base to determine whether another agent changed its fishing
goal during the previous round. The only requirement for this is that all four agents
chose to communicate during the previous round. In that case, a Fisher has enough
information to perform the following calculation. For this purpose, let r be the current
round, Sr−1 the population size during the previous round, G = {g1, g2, g3, g4} a set
of four distinct fishing goals gi (one reported by each Fisher agent), Rr the current
reproduction rate, and Sr the current population size.

Sr−1 −
|G|∑
1

gi +Rr = Sr (5.1)

If this equation is false, then at least one Fisher agent did not adhere to its commu-
nicated fishing goal during the previous round. However, the Fisher that performs
the calculation cannot know which agent did so because, based on the rules of the CPR

2This is a Comma-Separated Values (CSV) file that lists initial values of some of the agent’s properties.
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game, agents cannot disclose their decided fishing goals to each other (see Section 4.3).
Therefore, the consequence of discovering that a community member lied cannot be dir-
ected at that community member. It can only be directed at the community in general,
if at all.

The theory of Trust and Reciprocity does not describe how an individual responds to
having her trust broken. This is because the theory limits itself to one-time transactions
between strangers (see Section 4.4). Therefore, a Fisher agent’s response to discovering
that someone in the community did not reciprocate is not modelled after the theory. To
moderate the influence of the constant properties Trust and Reciprocity on an
agent’s future choices, an additional property Scepticism (a double between 0.0 and
1.0 that can change during the simulation) is introduced. When a Fisher finds that
someone in the community lied, its Scepticism value is likely to increase, representing
an increase in scepticism towards the community. The higher a Fisher agent’s value of
Scepticism, the lower the probability of that agent choosing actions that are rooted
in trust or reciprocity during future rounds.

Social Norms As described in Section 4.4, the theory of Social Norms focuses on
identifying and measuring norms in communities and leveraging expectations of com-
munity members to enact positive behavioural changes. In other words, the substance of
this theory is about changing individual behaviours at a large scale and over a long period
of time. During the design and development process of this thesis, it was found that the
theory is not readily applicable to the relatively small-scale and short-term setting given
by the chosen CPR game. Given the constraints imposed by the game’s setting and rules,
no way was found to devise a formalisation for changes in expectations and social norms
that can be readily integrated into the model.

Therefore, rather than focusing on changing social norms (as the theory of Social Norms
does), the idea of an existing social norm that impacts behaviours of a community at a
large scale was integrated into the model in the form of a hyperparameter. Since [31]
provides no insights on what might be realistic social norms for the community that
whose behaviour was studied in the paper, these norms are estimated and are therefore
broad in nature. In the agent initialization file, the property SocialNorm can be set to
0, 1, or 2. The value must be the same for all four agents. The values have the following
meaning:
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• 0: Individualism: Fisher agents with this setting skip the phase Communica-
tion and Deliberation and do not engage with each other. Such a simulation
essentially involves agents that act boundedly rational and without the influence
of the formalisation devised for the theory of Trust and Reciprocity.

• 1: Collectivism with potential decay: Fisher agents behave as described in the
preceding section on Trust and Reciprocity. They can communicate and reconsider
their fishing goals, but they can also grow increasingly sceptical of each other. The
initially collectivistic approach of the community might therefore decay over time,
making the community members increasingly dishonest and focused exclusively on
utility maximisation.

• 2: Collectivism and sustainability: Fisher agents with this setting engage in
communication and devise a common fishing goal cooperatively. They do so by
first choosing a fishing goal individually, and then forming the average of all four
fishing goals. Furthermore, if the average (times four) is found to deplete more
than a certain threshold of the current fish population, the community fishing goal
is reduced by a certain factor, promoting a sustainable use of the common resource
at the community level.

By being able to implicitly activate and deactivate theories, an attempt is made to make
their individual impact on the agents’ behaviour comparable. This addresses one of the
requirements stated in Chapter 3.

5.3 Agent Structure: Fisher

Given the structure of the model (see Section 5.1) and the formalisations of the beha-
vioural theories (see Section 5.2), the internal structure and behaviours of the Fisher
agent can be explored in detail. This section serves that purpose. The connection between
the Fisher and the Mind is described, followed by a detailed overview of the internal
structure of the Mind. Figure 5.4 shows the Fisher agent’s association with its Mind.
The implementation of this structure aims to address one of the requirements stated in
Chapter 3.
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«Class»
Mind

- _socAndBiophsyEnv : HuBccSocAndBiophysEnv
- _perception : HuBccPerception
- _situationalCharacteristics : HuBccSituChars
- _stableCharacteristics : HuBccStableChars
- _valuation : HuBccValuation
- _choice : HuBccChoice

+ SetInitialSocAndBiophysEnv(Village, FishingPlace) : void
+ SetStableChars(double, double, int, int, Dictionary<Range, int>) : void
+ SetSituChars(double, int) : void
+ GetCurrentTick() : long
+ GetFishingGoals() : IEnumerable<int>
+ GetNewFishPopSizeAndReprod() : void
+ GetCommunication() : void
+ EvaluateFishingGoals() : void
+ EvaluateCommunityTrustActions() : void
+ EvaluateTrustOrReciprocityActions() : void
+ ChooseCommunityTrustAction() : void
+ ChooseFishingGoal() : void
+ ChooseTrustAction() : void
+ ChooseReciprocityAction() : void
+ UpdateCommunityTrust() : void
+ Communicate() : void
+ ReconsiderFishingGoal() : void
+ Fish() : void
+ GetScepticismValues() : List<object>
+ GetFishingValues() : List<object>
+ GetTrustAndReciprocityValues : List<string>

1

1

«Agent»
Fisher

+ ID: Guid
+ Name : string
- _mind : Mind

+ Init(Village) : void
+ Tick() : void
- GetOutputValues() : void

Figure 5.4: Class diagram showing association between Fisher and Mind

The Mind features a literal representation of the HuB-CC elements that the chosen
theories (see Section 4.4) map to. Hence, the Mind provides the agent with dedicated
components, each responsible for a specific task. The class HuBccSocAndBiophysEnv
holds representations of the agent’s knowledge that come directly from its environment.
HuBccPerception is responsible for perceiving that information.3 The class HuBcc-
SituChars holds a set of situational characteristics, i.e., properties and information
that tends to change over time.4 Likewise, HuBccStableChars holds properties and
values that are permanent. Finally, the classes HuBccValuation and HuBccChoice

perform evaluation and decision tasks, respectively, on behalf of the Fisher agent.

The Mind encapsulates these classes from the Fisher, hence acting as a façade for
the Fisher [18, p. 185–194]. Using the public methods the Mind makes available

3In this model, HuBccPerception also performs tasks that would be more accurately classified as
tasks of an External Information Search component.

4In this model, HuBccSituChars also performs tasks that would be more accurately classified as tasks
of a Memory Search component.
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to the Fisher, the agent can make requests to its Mind. The processing of these
requests is orchestrated by the Mind internally and without the agent being aware of the
existence of the various internal components. Figure 5.5 shows the division of labour and
responsibility among the internal components of the mind in greater detail. The rationale
for this design choice is that a human also does not explicitly access parts of her brain
in order to retrieve certain information or perform certain cognitive tasks. Rather, most
of these processes happen intuitively and subconsciously, and typically, they begin with
the mental formulation of an idea or some need. Similarly, a Fisher agent can make
a request to its Mind and let it perform the required steps explicitly to complete the
task.
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«Class»
HuBccValuation

+ EvaluateCommunityTrust(int, int, int, IEnumerable<int>) : List<double>
+ EvaluateFishingGoals(int, double) : List<double>
+ EvaluateTrustOrReciprocityActions(double, double, bool) : List<double>
- SkewProbDist(double, List<double>) : List<double>
- SoftMax(IReadOnlyList<double>) : List<double>

«Class»
HuBccStableChars

+ FishCount : int
+ Trust : double
+ Reciprocity : double
+ SocialNorm : int
+ ReproductionDynamics : Dictionary<Range, i

«Class»
HuBccChoice

+ ChooseCommunityTrustAction(List<double>) : double
+ ChooseFishingGoal(int, List<double>) : int
+ ChooseTrustAction(List<double>) : string
+ ChooseReciprocityAction(List<double>) : string
- MakeKeyValuePairList(IReadOnlyList<string>, IReadOnlyList<double>) : List<KeyValuePair<string, double>>
- ChooseBasedOnProbabilities(List<KeyValuePair<string, double>>) : string

«Facade»
Mind

«Agent»
Fisher

+ ID: Guid
+ Name : string
- _mind : Mind

+ Init(Village) : void
+ Tick() : void
- GetOutputValues() : void

«use»

«use»

«use» «Class»
HuBccPerception

+ GetCurrentTick(Village) : long
+ GetFishPopSizeAndReprod(FishingPlace) : List<int>
+ GetCommunication(Village) : ConcurrentBag<int>

«Class»
HuBccSituChars

+ CommunityTrustProbDist : List<double>
+ ScepticismChange : double
+ FishingGoalProbDist : List<double>
+ FishingGoal : int
+ TrustActionProbDist : List<double>
+ TrustAction : string
+ ReciprocityActionProbDist : List<double>
+ ReciprocityAction : string
+ Scepticism : double
+ Overfished : bool
+ FishingGoals : int[ ]
+ CommunityLiedLastRound : bool

«Class»
HuBccSocAndBiophysEnv

+ Village : Village
+ FishingPlace : FishingPlace
+ FishPopulationSizePrev : int
+ FishReproductionRatePrev : int
+ FishPopulationSizeCurrent : int
+ FishReproductionRateCurrent : int

«use»

«use»

«use»

Figure 5.5: Class diagram showing the Mind and its internal components as a façade
for the Fisher
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5.4 Agent Behaviour

In the preceding sections, the model structure, theory formalisation, and agent structure
were described. To complete the description of the model, the behavioural routines of
the agents need to be outlined. This section offers an overview of the main processes of
the agent types Fisher, FishPopulation, and Facilitator.

Routine of the Fisher

To model the behavioural routine of the fisher similarly to how the real-world CPR
game (see Section 4.3) proceeded, it is not feasible to map one round of the game to
one simulation tick. In that case, the agents would need to observe the environment,
communicate with each other, evaluate and choose a fishing goal, and fish in one tick.
Since MARS agents run concurrently (see Section 4.1), coordinating these tasks simul-
taneously for four agents would be challenging. Furthermore, it would not make for an
accurate representation of the way the original CPR game proceeded from one phase
to the next. Therefore, while designing and implementing the model, it was decided to
sequentialise the routine of one round of the CPR game by splitting it up into a number
of ticks. Figure 5.6 shows the resulting routine for the Fisher agent. Each round is
divided into nine ticks. Since the CPR game consists of 16 rounds, a simulation consists
of 9× 16 = 144 ticks. Depending on which tick it is during a given round, only a certain
part of the overall behaviour routine is completed. This is comparable to a stage-based
game in which all players advance from one stage to the next only once every player has
finished the current stage.

The routine features two Perception tasks, four Valuation-Choice tasks5, and two Be-
haviour tasks. Other HuB-CC components within the Mind – that are not included in
Figure 5.6 – are accessed during the execution of these tasks. A description of the task
performed during each tick follows.

5In this model, Valuation and Choice always occur pairwise, with Choice receiving an input from
Valuation and choosing an action. However, it is also conceivable for behavioural models to feature
Valuation-Choice subroutines that involve a feedback loop from Choice back to Valuation to, for
example, re-evaluate a set of options based on alternative criteria.
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Tick 1 of 
current 
Round?

Perception: Get new population size and
reproduction rate of FishPopulation 

Valuation/Choice: Update trust in community

End of 
Round 16?

Tick 2 of 
current 
Round?

true

false

true

false

Valuation/Choice: Evaluate fishing goals
and choose a fishing goal

Tick 3 of 
current 
Round?

false

true

Valuation/Choice: Evaluate trust-based
actions and choose an action

(communicate or don't communicate)

Tick 4 of 
current 
Round?

false

true

Behavior: Carry out chosen trust-based
action

Tick 5 of 
current 
Round?

false

true

Perception: Obtain messages from
community

Tick 6 of 
current 
Round?

false

true

Valuation/Choice: Evaluate reciprocity-based
actions and choose an action (adhere to stated

FishingGoal or change it)

Tick 7 of 
current 
Round?

false

true

Behavior: Fish

Tick 8 of 
current 
Round?

false

true

Auxiliary: Write current
values to output file

false

true

Figure 5.6: Activity diagram showing the behavioural routine of the Fisher
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Tick 1 During this tick, each Fisher agent acquires updated information for the
environment – specifically, the CurrentPopulationSize and CurrentReproduc-

tionRate of the FishPopulation. With the updated information, the agent can
perform the calculation listed in Section 5.2 to evaluate (and potentially update) its
trust in the community. A change in trust is reflected by an increase in the agent’s
Scepticism.

Tick 2 During this tick, each Fisher evaluates a range of possible fishing goals and
chooses one of them. The decision is based on the CurrentPopulationSize as well
as the agent’s Scepticism – if applicable, based on the value of SocialNorm (see
Section 5.2). In general, fishing behaviour is modelled as being relatively greedy when
there are many fish and relatively conservative when there are few fish. When the agent’s
Scepticism in its community is high, this behaviour gets skewed towards greed even
when the CurrentPopulationSize is low. The rationale for this is that such an agent
is less concerned with cooperation within the community and more focused on maximising
personal utility, since it assumes that its peers are doing the same – as indicated by their
dishonesty during previous rounds.

Tick 3 During this tick, each Fisher evaluates whether or not to communicate with
the community. This is a Trust-based action in the model (see Section 5.2 for the
formalisation of the theory of Trust and Reciprocity). If Scepticism is high, it can
skew the valuation and choice process towards not communicating, indicating the agent’s
lack of trust in the community. This trend can be further exacerbated if, during tick 1,
it was found that a community member lied during the previous round.

Tick 4 During this tick, each Fisher performs the action chosen during tick 3. Spe-
cifically, the agent either reports or does not report the fishing goal chosen during tick 1

to the Village.

Tick 5 During this tick, each Fisher retrieves the fishing goals reported by the other
agents from the collection in the Village.
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Tick 6 During this tick, each Fisher evaluates whether to adhere to or change the
fishing goal that was chosen during tick 2 and potentially reported to the community
during tick 4. In the model, this is a Reciprocity-based action (see Section 5.2 for
the formalisation of the theory of Trust and Reciprocity). The process of valuation and
choice here works analogously to the one that is performed during tick 3. If a Fisher
chooses to change its fishing goal, it is increased by some percentage before advancing to
the next tick.

Tick 7 During this tick, each Fisher approaches the FishingPlace and aims to
extract the number of fish it has chosen. A Fisher always catches as many fish as it has
aimed to, unless there are not enough fish available to accommodate the chosen fishing
goal.

Tick 8 During this tick, each Fisher obtains a set of property values from the Mind to
write to the simulation output file. Note: this step is necessary for technical reasons. In
devising the internal agent structure shown in Figure 5.4 and Figure 5.5, the properties of
the agent were moved from the class Fisher into the Mind and its associated HuB-CC
classes. The MARS system, however, can only write agent properties to output media
if those properties are explicitly present in the agent type class. Therefore, at the end
of each round, these values are retrieved from the Mind so that the MARS system can
write them to an output file for later analysis of simulation results. While this is not
ideal and caused many properties to be duplicated, it was deemed worthwhile for this
thesis to enable the development of an internal agent structure.

Note: If integrated into the simulation flow, the Weather agent would become active
during tick 0 of a given round.

Interaction between Fisher and Mind

Figure 5.7 shows an interaction sequence between the Fisher and its Mind during a
Valuation process. As indicated in Figure 5.6, there are four such processes during each
round. To illustrate the typical flow of these processes, the evaluation task Evaluate-
FishingGoals() (performed during tick 2 of each round) is taken as an example.
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: Fisher : Mind : HuBccSocAndBiophysEnv : HuBccSituChars : HuBccValuation

EvaluateFishingGoals()
GetCurrentFishPopSize()

CurrentFishPopSize

GetScepticism()

Scepticism

EvaluateFishingGoals(CurrentFishPopSize, Scepticism)

FishingGoalProbDist

SetFishingGoalProbDist(FishingGoalProbDist)

Figure 5.7: Sequence diagram showing interaction between Fisher and Mind
(Example: EvaluateFishingGoals())

The Fisher sends a request to its Mind, asking for an evaluation of fishing goals. The
Mind proceeds to acquire the information necessary to perform the task. An evaluation
of fishing goals requires the CurrentFishPopulationSize, which is obtained from
the HuBccSocAndBiophysEnv. Furthermore, since the range of fishing goals is im-
pacted by the Fisher agent’s trust towards the community, the current value of the
agent’s Scepticism is retrieved from HuBccSituChars. The information is fed into
HuBccValuation, where the valuation task is performed. The return value is stored
in HuBccSituChars for subsequent use by HuBccChoice.

Valuation Process

Continuing to zoom in on the internal activities of the Mind, Figure 5.8 shows each step
of the valuation task that is performed in HuBccValuation, as shown in the sequence
illustrated in Figure 5.7. In the implemented model, a valuation process is generally car-
ried out by devising a probability distribution over the possible actions. In the example
EvaluateFishingGoals(), the valuation of fishing goals consists of devising prob-
abilities for three possible fishing ranges: low, medium, high. The probabilities listed in
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Figure 5.8 correspond to this order. An initial probability distribution LP is devised based
on the value of CurrentFishPopulationSize. For example, if CurrentFishPop-
ulationSize > 40, then the initial probability distribution LP := [0.1, 0.3, 0.6]. This
implies p(low) = 0.1, p(medium) = 0.3, and p(high) = 0.6.

Initialize an empty probability
distribution list 

CurrentFishPopSize
else

Scepticism

Skew the probabilities in  
in favor of high fishing goal,

relative to Scepticism 

else

Apply SoftMax
function to  

Return  

Figure 5.8: Activity diagram showing a Valuation processes performed in the
HuBccValuation component (Example: EvaluateFishingGoals())

These initial probabilities can be skewed by the agent’s Scepticism. In the model, a
probability distribution with three values is skewed by adding the value of Scepticism
to each of its probabilities multiplying with 1, 2, and 4, respectively. The resulting
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numbers no longer add up to 1.0. To restore this property, the Softmax function σ is
applied. σ is an order-preserving6 function that normalises its inputs:

σ(LP )i =
epi∑|LP |

j=1 epj

For LP as defined at the top of the previous page and Scepticism = 0.6, the probability
distribution – after applying the process shown in Figure 5.8 – is [0.1, 0.1, 0.8] (rounded to
one significant digit). The new distribution more highly favours choosing a high fishing
goal than LP did.

The process of Choice is modelled by choosing an action from the set of available ac-
tions based on the probability that was computed for it by HuBccValuation. In the
present example, p(low) = 0.1, p(medium) = 0.1, and p(high) = 0.8. A highly sceptical
Fisher can still choose a moderate or low fishing goal under these circumstances, but
the probability of doing so is small. In the case of evaluating the choosing fishing goals,
furthermore, there is a small probability of choosing an extremely high goal, resulting in
overfishing if the choice is executed.

Routine of the FishPopulation

Figure 5.9 shows the routine of the FishPopulation. At the end of each round, the
agent updates the CurrentPopulationSize based on the applicable reproduction
rate (see Section 4.3). Afterwards, and CurrentReproductionRate is updated ac-
cording to the new population size. Furthermore, as stated in the rules of the CPR game,
the population is restored to its full original size of 50 at the beginning of round 7.

6The ith number in the natural order of the input before applying σ to LP remains in the same place
after applying σ. This is true for all numbers of the input.
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End of 
current 
Round?

Reproduce and update
CurrentReproductionRate accordingly

End of 
Round 16?

Beginning of
Round 7?

Set CurrentPopulationSize to
InitialPopulationSize and update

CurrentReproductionRate accordingly

true

true

true

false

false

false

Figure 5.9: Activity diagram showing the behavioural routine of the FishPopulation

Routine of the Facilitator

As mentioned in Section 5.1, the Facilitator is responsible for clearing the collec-
tion FishingGoals in the layer type Village. This collection is used by Fisher

agents to communicate their current fishing goals with each other. At the end of each
round, the Facilitator empties the collection, making it ready for the next group
communication. Figure 5.10 illustrates this routine.
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End of 
Round 16?

End of 
current 
Round?

Clear contents of FishingGoals 
(communication bag) in Village

true

true

false

false

Figure 5.10: Activity diagram showing the behavioural routine of the Facilitator

5.5 Implementation Details

In this section, implementation details are listed that are considered to be relevant but
did not fit in any of the preceding sections.

Refactoring

During the implementation process, it was noticed that some constants are used in several
parts of the model. For example, the reproduction dynamics (see Figure 5.2) is accessible
explicitly by the FishPopulation and implicitly by the Fisher via the Mind. Such
multiple uses were identified and refactored into structs to serve as central points of
access. This resulted in seven structs that hold different types of information. For
instance, the probabilities used during the Valuation processes are stored in structs. This
approach is thought to be less error-prone than storing values explicitly at their multiple
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locations of use, and can also be helpful during the modelling process. For instance,
the values of a given probability distribution can be changed at one central location and
automatically be applied at all locations of use throughout the model. For ABMs, it is
possible that storing decision rules of agents in this fashion can also be worthwhile.

Model Configuration and Execution

The configuration of the model occurs via a JavaScript Object Notation (JSON) file in
the project’s root directory called config.json. The file contains configuration information
that is typical for an ABM written in MARS7 In addition, some model-specific parameters
are required, such as the layer types Village and FishingPlace. Furthermore, the
agent types Fisher, FishPopulation, and Facilitator with count values 4, 1,
and 1, respectively, are required – the agent type Weather is optional. Each agent type’s
outputFrequency is set to 9, causing only one output to be produced per round.

In the directory Resources, the agent initialisation files are located. The file of the
agent type Fisher is called init_fisher.csv. It contains values for the properties Name,
Trust, Reciprocity, Scepticism, and SocialNorm. The initialisation file of the
agent type FishPopulation is called init_fish_population.csv and contains initial val-
ues for the properties InitialPopulationSize, CurrentPopulationSize, and
ReproductionRate. The agent type Weather has an initialisation file called init_-
weather.csv that contains a value for the property EventType.

The simulation can be started via the file Program.cs that is located in the project’s root
directory. At the beginning of the Main() method, a local variable numberOfSims and
socialNorm can be set to indicate the number of simulations that should be run and
the social norm that should be active, respectively. Note: The value of socialNorm
in the file Program.cs should be the same as the value of the property SocialNorm set
in the initialisation file of the Fisher agent.

7For more details, please see https://mars.haw-hamburg.de/articles/core/model-
configuration/index.html
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6 Results

After designing and implementing the model as described in Chapter 5, it was executed
using different configurations and initial values to study the Fisher agents’ behaviour.
In this chapter, the used configurations and values are first outlined before showing basic
round-based, averaged data to verify the model’s core functionality. This is followed by
results that highlight overfishing and population extinction as well as the Fisher agents’
development over time with respect to choosing positive trust-based and reciprocity-based
actions. Lastly, the function for skewing probability distributions in favour of negative
behaviours (see Section 5.4 and Figure 5.8) is reviewed.

6.1 Model Configuration

To produce the results shown in this chapter, the model was configured using the means
described in Section 5.5. Table 6.1 shows the initial values for the agent type Fisher in
the respective initialisation file. For other runs, the value of SocialNorm was changed
to 1 and 2 for all four agents. A total of 100 runs were completed per SocialNorm
value. Table 6.2 shows the initial values for the agent type FishPopulation.

Table 6.1: Initialisation parameters for the agent type Fisher
Name Trust Reciprocity Scepticism SocialNorm

A 1.0 1.0 0.0 0
B 1.0 1.0 0.0 0
C 1.0 1.0 0.0 0
D 1.0 1.0 0.0 0
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Table 6.2: Initialisation parameters for the agent type FishPopulation
InitialFishPopulationSize CurrentFishPopulationSize CurrentReproductionRate
50 50 0

To evaluate simulation results, a Jupyter Notebook was prepared. It is in the project’s
repository in the directory Output. Simulation results that are produced by following
the steps described in Section 5.5 can be retrieved and processed by running the entire
notebook. All plots are produced using the Python library pyplot from matplotlib. In
addition, the appendix that was submitted along with the thesis is available on CD and
can be requested from the thesis’ first supervisor.

6.2 Model Validation

The following three plots show the FishCount per agent per round, averaged over 100
simulation runs. In addition, the average FishPopulationSize is shown. These plots
aim to serve for basic model validation by addressing whether the model adequately per-
forms the most basic functionality it is intended for, i.e., producing a plausible dynamic
between increasing FishCounts and a decreasing FishPopulationSize.

Figure 6.1 shows the development of these properties when SocialNorm= 0 (see Section
5.2). In this setting, agents to not engage in any communication and instead fish by
themselves.
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Figure 6.1: FishCount and FishPopulationSize per round, averaged over 100
simulations (SocialNorm = 0)

As defined in the initialisation file, the FishPopulationSize starts at 50, while the
Fisher agents start the simulation with 0 fish. The population size declines steeply. The
FishCount values experience an initially steep increase, while begins to taper off after
1-2 rounds. The system seems to stabilise until the FishPopulationSize is restored
to 50 at the beginning of round 7. (The restoration is not seen in the plot because the
FishPopulationSize is decreased again by the Fisher agents before its value is
written to the output file). Between rounds 7-9, a similar trend to the one seen between
rounds 0-2 can be observed. For the remainder of the game, the Fisher agents seem
to fish conservatively, allowing the FishPopulationSize to stabilise. The fishing
behaviour of the Fisher agents appears to be very similar to each other. It should be
restated that these results were obtained by averaging values from over 100 simulation,
potentially averaging out outlier behaviours.

Figure 6.2 and Figure 6.3 show results for the same experimental setup, but with So-

cialNorm = 1 and SocialNorm = 2, respectively. The trends are similar to the
one seen for SocialNorm = 0. For SocialNorm = 1, a steeper average decline of
the FishPopulationSize can be observed near the end of the simulation. For So-
cialNorm = 2, the FishCount values appear even more closely aligned than when
SocialNorm = 0 or SocialNorm = 1.
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Figure 6.2: FishCount and FishPopulationSize per round, averaged over 100
simulations (SocialNorm = 1)
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Figure 6.3: FishCount and FishPopulationSize per round, averaged over 100
simulations (SocialNorm = 2)
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6.3 Overfishing and Extinction

A important theme of CPR games is the potential extinction of the natural resource in
question. Figure 6.4 shows the absolute counts of overfishing events (see Section 5.4) and
extinction events across 100 simulations, stratified by the active SocialNorm.
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Figure 6.4: Number of times overfishing or population extinction occurred, averaged
over 100 runs per SocialNorm.

In the individualistic setting (SocialNorm = 0), there were 160 overfishing events and
10 extinction events, while in the initially collectivistic setting (SocialNorm = 1), there
were 200 and 28, respectively. Lastly, in the fully collectivistic setting (SocialNorm
= 2), there were 66 overfishing events and 7 extinction events. While there seem to
be clear differences in behaviour that cause these numbers, it is important to note that,
altogether, the agents had 4×16×100 = 6,400 opportunities to engage in behaviour that
results in overfishing and/or population extinction. Table 6.3 shows the corresponding
relative frequencies.
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Table 6.3: Relative frequencies of overfishing and population extinction during 100
simulation runs, stratified by active social norm

Metric SocialNorm = 0 SocialNorm = 1 SocialNorm = 2

Overfishing 0.025 0.03 0.01
Extinction 0.002 0.004 0.001

6.4 Trust, Reciprocity, Scepticism

The Fisher agents’ internal logic is strongly focused on modelling valuation and choice
processes. Decision-making is a key element of both the model and the original CPR
game. Figure 6.5 shows the ratio between, on the one hand, positive trust-based/reciprocity-
based behaviours (i.e., communicating one’s fishing goal to the community and adhering
to the communicated fishing goal, respectively) and the total number of such decisions.
On the other hand, it shows the ratio between negative trust-based/reciprocity-based
behaviours (i.e., not communicating and not adhering to the communicated fishing goal,
respectively) and the total number of such decisions. These data are available only for
simulations with SocialNorm = 1, since the distinction between positive and negative
trust-based and reciprocity-based behaviours do not apply in the other two variations.

While the chart features many line plots and is difficult to read in detail, the main trend
can be stated as follows: the Fisher agents began the simulation with high trust (top
left of the plot area) because their initial values were configured that way (see Table 6.1).
However, during the simulation, their willingness to trust and/or reciprocate decreases
as a result of increasing scepticism. Figure 6.6 shows a corresponding linear increase of
Scepticism over time (also for SocialNorm = 1).
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Figure 6.5: Ratio between positive/negative trust-/reciprocity-based behaviours and
total number of behaviours per agent over rounds, averaged over 100 simulation runs

(SocialNorm = 1)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e 

Sc
ep

tic
ism

Average Scepticism per agent (4) per round
across simulations (100) (sn1)

A
B
C
D

Figure 6.6: Scepticism trend per agent over rounds, averaged over 100 runs
(SocialNorm = 1)

51



6 Results

6.5 Skewing Probability Distributions

The following four plots show the trajectory of the skewing function that was introduced
in Section 5.4. Based on an an agent’s current value of Trust/Reciprocity and
Scepticism, the function skews a probability distribution over a set of choices towards
the negative choice(s). As mentioned in Section 5.2, both Trust and Reciprocity

are modelled as stable characteristics, while Scepticism is modelled as a situational
characteristic. Intuitively, it is expected that the lower any of these values, the more
strongly the function skews a given probability distribution towards negative choices
(i.e., not trusting or not reciprocating).

The plots show the probability of choosing an action as a function of Scepticism,
with Scepticism ranging from 0.0 to 1.0. Figure 6.7 shows the trajectory of the
function when Trust/Reciprocity is fixed at 0.25. Focusing on the blue line (the
positive behaviour), it can be seen that the probability of choosing it increases slightly as
Scepticism increases from 0.0 to 0.1, before proceeding to decrease as Scepticism
approaches 1.0. The small increase at the beginning is an inaccuracy in the function.
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Figure 6.7: Trajectory of skewing function
with Trust/Reciprocity = 0.25
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Figure 6.8: Trajectory of skewing function
with Trust/Reciprocity = 0.5

Figure 6.8 shows the trajectory that emerges when Trust/Reciprocity is fixed at 0.5.
When Scepticism = 0.0, the probabilities of choosing the positive or negative beha-
viour are equal. As Scepticism increases, the probability of choosing the positive ac-
tion decreases. Figure 6.9 and Figure 6.10 show the trajectory for Trust/Reciprocity
= 0.75 and Trust/Reciprocity = 1.0, respectively.
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In this final chapter of the thesis, an evaluation of the results is offered. This is followed
by a review of the internal structure of the agent in conjunction with the application of
the HuB-CC framework’s elements. The interdisciplinary nature of implementing theory-
based behavioural routines in agents is touched on, before concluding with an outlook
to potential future endeavours that might build on the findings and learnings of this
thesis.

7.1 Analysis of Results

This section offers a critical analysis of the results presented in Chapter 6. In Figure
6.1, Figure 6.2, and Figure 6.3, the trajectories of the agents’ FishCount values are
very consistent, both within one SocialNorm and across SocialNorms. This seems
to indicate that the agents’ decision-making and behaviour is unaffected by the active
SocialNorm. However, the plots of these three figures are based on average values
obtained from 100 simulation runs per SocialNorms. It appears that, while there is
variance across individual decisions and behaviours, it is negligible enough to be averaged
out over a large number of simulation runs. Hence, while the three figures illustrate the
general course of a simulation (in terms of FishCount and FishPopulationSize),
they do not illustrate outlier behaviours. Instead, they serve to verify the model – as they
show that Fisher agents, on average, behave as they should and the FishPopulation
decreases as it is expected to – and show the model’s trend over time. It is worth noting,
however, that for SocialNorm = 0, the four trajectories differ most, albeit still not
significantly.

Figure 6.4 more aptly shows outlier behaviours. While the rate of overfishing and pop-
ulation extinction is small, these behaviours are exhibited occasionally by the agents.
Table 6.3 shows that the rates are extremely small when considering the total number of
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decisions made by the agents that could potentially result in overfishing or population
extinction over 100 simulation runs. In summary, the model is descriptive enough to
produce these behaviours. But it seems that the details of decision-making need to be
fine-tuned in order to produce more realistic rates. This would have been possible if
there were similar numerical measurements shown from the CPR game in [31] for the
simulation to aim for.

A similar assessment can be made about the trajectories of the ratios of Trust- and
Reciprocity-based actions shown in Figure 6.5 as well as the value of Scepticism
shown in Figure 6.6. The latter shows an almost linear increase, indicating that the
model, on average, simply increments Scepticism by an almost constant value. In-
tuitively, a more realistic growth of Scepticism might take the shape of logarithmic
function that converges to some upper bound that is less than 1.0. At the rate seen
in Figure 6.6, the value of Scepticism would likely reach 1.0 and remain there if the
simulation continued for more rounds. It is doubtful that human scepticism behaves this
way, and it cannot be inferred from the theory of Trust and Reciprocity because it does
not give insights into long-term interactions between individuals.

Intuitively, the trajectories of the skewing functions shown in Figure 6.7 through Figure
6.10 appear plausible. The higher the value of Trust/Reciprocity (see, for example,
Figure 6.9 and 6.10), the higher the starting point of the blue line (which indicates a choice
of a trusting/reciprocating action). As Scepticism increases, the probability of making
that choice decreases, while the probability of making the opposite (negative) choice
increases proportionally. This function appears to describe the relationship between the
three variables well – as it is defined in the model, which is not fully supported by the
underlying theories of human behaviour. The only area of concern in the trajectory is
around Scepticism = 0.1, where there is a kink in three of the four lines. This can
potentially be smoothed out by tweaking the function further.

Finally, it must be noted that more simulation runs with different configuration values
could have been performed to showcase a more varied scope of behaviour that the model
can potentially produce. For example, the agents could have been initialised with lower
values for Trust/Reciprocity to observe the effect on the course of the simulation.
As shown in Table 6.1, such runs were not completed for this thesis.
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7.2 Analysis of Agent Structure and HuB-CC elements

As outlined in detail in Section 5.3, an attempt was made to integrate the elements
of the HuB-CC framework into the internal structure of the Fisher agent. A literal
representation of the HuB-CC elements was chosen for this purpose, meaning that each
element that was mapped to by one of the theories (see Section 4.4) was included as one
class in the architecture. To facilitate easy communication between the Fisher agent
and its Mind, the façade pattern was implemented. As a result, the Mind provides a
uniform interface via a set of public methods to the Fisher agent. This reduces the
number of dependencies in the Fisher-Mind relationship and eliminates any need for
the Fisher to be aware of the internal structure of the Mind.

Throughout the design and implementation process, the elements of the HuB-CC frame-
work proved very useful as an organisational tool. From a modeller’s perspective, it is
helpful to think of an agent’s activities in terms of the elements to facilitate a clear sep-
aration of concerns in the design. This is also useful for assessing the sophistication and
completeness of an agent’s behavioural routine with respect to specific elements. If, for
example, it is found that the agent’s Valuation component is insufficient in some way, it
is easy to identify the place in the model at which adjustments need to be made because
of the clear separation facilitated by the elements. While a one-to-one representation
of the HuB-CC elements was implemented in this model, it can be argued that certain
elements can be grouped together to simplify the architecture. For example, the elements
Stable Characteristics and Situational Characteristics can be grouped into one class and
separated internally via some syntactic means.1 Likewise, it is possible that combining
the elements Perception and Social and Biophysical Environment can simplify certain
routines that the agent – or, in case of architecture designed for this thesis, the Mind –
needs to execute repeatedly. Perception, by design, is likely to often occur in conjunc-
tion with aspects of the Social and Biophysical Environment. Such simplifications can
improve the code base while still maintaining the domain-specific separation of concerns
provided by the HuB-CC framework.

The HuB-CC framework as a whole was found to be helpful in informing the design
process. Without the use of theories, much of the design of agent behaviour is left to the
modeller’s intuition and best guess. The theories help the modeller to ground her design

1In C#, for example, such a separation can be achieved by dividing the code base into regions.
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decision in a theoretical foundation. Still, it remains challenging to choose a well-suited
theory and to abstract the necessary information from it to devise a strong design.

7.3 Interdisciplinary Work

One of the intentions and requirements (see Chapter 3) of this work was to develop
an ABM through interdisciplinary work with domain experts from the social/cognitive
sciences and sustainability science. This goal was achieved in so far as the conceptual
portion at the beginning of the thesis, i.e., before the design and implementation process,
was carried out over a number of conversations with psychologists and a sustainability
expert. The model basis as well as the theories were identified during this stage. The
remainder of the project was carried out by the author of this thesis.

Choose model
basis/scenario

Domain 
expert

Computer 
scientist

Choose
theories of

human
behaviour

Domain 
expert

Formalise
theories of

human
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scientist
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Computer 
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Domain 
expert

Computer 
scientist

Verify model Validate
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Computer 
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expert

Domain 
expert

Computer 
scientist

Figure 7.1: Proposed interdisciplinary workflow between domain experts and computer
scientists to design a theory-driven ABM

Figure 7.1 shows a proposed interdisciplinary workflow in which an ABM with theory-
oriented behavioural logic can be implemented from the initial conception to the finished
model. In the diagram2, the high-level stages of the modelling process that were carried
out for this thesis are listed in sequential order. Below each stage, either one or two

2Syntactically, this diagram uses a loose adaptation of the Unified Modelling Language (UML) activity
diagram. It is not intended, nor does it claim, to use that syntax accurately.
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actors are present, indicating the role of the individual3 who is intended to perform the
task. When two actors are present, the actor that is closer to the task is considered to
be the main performer of the task, while the other actor serves at least a supportive
function. The main path is linear from left to right; however, it is important to note
the feedback loops, which indicate that the process might involves steps back to passed
stages to reconsider previously made selections (e.g., of theories) and design decisions
(e.g., within the model).

For this thesis, the first two steps shown in Figure 7.3 were carried out with the help of
domain experts. As the diagram shows, a longer-term interaction between the computer
scientist and the domain expert who participate in the project is thought to be favourable
to ensure a satisfactory end result. At the end of the workflow, the two stages "Verify
model" and "Validate model" indicate the confirmation of the functional correctness of
the model and the non-functional correctness of the model, respectively. In other words,
the computer scientist is mainly responsible for confirming that the model performs
correctly (i.e., does not contain any computational errors or other problems that were
introduced during the implementation phase). The domain expert, on the other hand, is
better suited for confirming that the model performs accurately in terms of the theory
formalisations that were defined at the beginning of the process.

7.4 Conclusion and Outlook

This project involved a theory-oriented design and implementation of agent behaviour in
an ABM, given a model scenario that is based on a real-world CPR. While there were
many valuable lessons and takeaways for the author of this thesis, the integration of all of
these parts proved challenging. From a non-domain expert’s perspective, some aspects of
the chosen theories were found to be not ideally suited for the model scenario. Likewise,
the theories did not touch on some aspects that were thought to be necessary for fully
describing the agents’ behaviour in a intended theory-oriented fashion. As a result, the
theory formalisations (see Section 5.2) are rudimentary. It is apparent that a strong
and well-matched pairing between a model scenario and a set of theories is crucial for a
fruitful implementation.

3For simplicity, the written description uses the singular form. But each actor in Figure 7.1 can represent
either one person or a group of persons, depending on whether a single computer scientist/domain
expert or a group is involved in the project.
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Still, the usefulness of consulting theories of human behaviour when implementing be-
havioural routines of agents that are meant to represent humans is clear. Also, the
segmentation of an agent’s internal structure along domain-informed lines helps to facil-
itate a clear and clean internal architecture. While the architecture devised in this work
is in some respects not ideal (as touched on in Section 5.3 and Section 7.2), it can be
improved on in future iterations.
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Glossary

Attention A HuB-CC element that describes the process focused on perception, inform-
ation acquisition and updating, and learning [10].

Behaviour AHuB-CC element that describes the process by which an individual executes
the choice made [10].

Bounded Rationality A theory of human behaviour that describes the human decision-
making process as being rational (i.e., focused on maximising personal utility)
and bounded (i.e., limited in knowledge and information-processing capability by
conditions and constraints imposed by the environment) (see [36]).

Choice A HuB-CC element that describes the process by which an individual chooses
an option or action [10].

External Information Search A HuB-CC element that describes the process of acquiring
information through an external search [10].

Learning and Updating A HuB-CC element that describes the process by which an
individual updates her mental representations and characteristics and learns about
rules, norms, or novel events and environments [10].

Memory Search A HuB-CC element that describes the process of recalling, retrieving,
and recognising information that has been previously encoded [10].

Perception A HuB-CC element that describes the process by which an individual senses
and interprets the surrounding social and biophysical environment [10].
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Glossary

Rational Choice A theory of human behaviour that describes the human decision-making
process as being rational, i.e., focused on maximising personal utility.

Satisficing The act of foregoing a choice that might yield high short-term reward to
enable an even higher long-term reward, usually in the face of incomplete inform-
ation.

Situational Characteristics A HuB-CC element that describes characteristics that are
activated or salient at a given moment in time or in a specific context (typically
subsets of Stable Characteristics) [10].

Social and Biophysical Environment A HuB-CC element that describes the environ-
ment in which an individual is situated [10].

Social Norms A theory of human behaviour that describes a connection between norms
at the societal level and expectations at the individual level, aiming to identify social
norms in communities and moderate expectations of members of that community
to facilitate a desired change in their behaviour (see [6, 8]).

Stable Characteristics A HuB-CC element that describes an individual’s personality
traits, dispositions, and other variables that can be considered permanent, chron-
ically present, or slowly changing [10].

Trust and Reciprocity A theory of human behaviour that describes how trust and reci-
procity factor into a one-time, two-way exchange between two individuals that do
not know each other (i.e., interact with each other for the first time) (see [4]).

Valuation A HuB-CC element that describes the process by which an individual evalu-
ates the qualities or desirability of an option [10].
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