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1. Integrate the model into the SOH simulation      
environment.

2. Investigate whether the model can predict  
alternative, similar actions by leveraging the   
similarity between actions in relation to 
traits and situations.

Next Steps

Large Language Model (LLM) agents can 
simulate realistic, human-like decision-
making. This makes them a promising tool 
for exploring diverse urban scenarios and 
stakeholder behaviors. However, LLM 
agents are computationally expensive and 
do not scale well to large populations. This 
project investigates an alternative app-
roach that approximates the behavior of 
LLM agents, enabling scalable multi-agent 
simulations of complex environments.

Motivation

To simulate realistic urban dynamics, we 
use a simulation framework with a detai-
led, city-scale scenario. The MARS (Multi-
Agent Research & Simulation) framework 
provides the general infrastructure for 
multi-agent simulations. It offers a spatial-
ly and temporally structured environment 
where agents can perceive, act, and inter-
act. The Smart Open Hamburg (SOH) sce-
nario, models the mobility behavior of ur-
ban agents in the city of Hamburg. The 
SOH scenario defines the city’s geography, 
infrastructure, and activity patterns, ena-
bling agents to exhibit realistic, human-like 
mobility.
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Agent Decision Depends on Traits

2. Training

To investigate whether the probability of an agent’s decision can be predicted from individual traits and situational factors, an 
encoder-only transformer model will be developed. The model receives both the modular probabilities and the semantic 
representations of the selected traits and situations as input, and predicts the combined scenario probability as output.

Figure 1. Simulation of Agents at Hamburg Central Station

Situation: ice cream 
truck nearby
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Trait: likes treats→ Action: buys ice cream Trait: dislikes treats→ Action: walks away

3. Inference

1. Data Generation

4. Architecture Optimization

- Define situations S, agent traits T and action a
- Prompt structure (simplified): Given selected traits T′, selected 
   situations S′, and an action a, return the probability of a
- Generate LLM responses for each individual trait or situation
- Generate LLM responses for the full scenarios
- Store all inputs, and corresponding LLM outputs as structured data

Stored Data
LLMPrompts

Stored Data

- Train an encoder-only transformer on the structured dataset:
- Input x: modular probabilities + embeddings of selected 
   traits T′ and situations S′
- Target y: LLM’s combined scenario probability

Input x

Target y

Transformer
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- Use the trained encoder-only transformer to predict the 
   combined scenario probability
- Input x: modular probabilities + embeddings of new

combinations of T′ and situations S′
- Store inference results

Inference results
Input x Transformer

- Compare inference results across different model 
   configurations
- Adjust architecture parameters (e.g., number of layers, 
   attention heads, hidden size) based on performance
- Repeat training and inference until the model accurately 
   captures the interaction between T′, S′, and a, and the 
   best architecture is identified
- The best architecture minimizes the prediction error:
   L=MSE(𝑷𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒓(a ∣ T′,S′), 𝑷𝑳𝑳𝑴(a ∣ T′,S′))

Case study: SOH
At the start of the simulation, the modular 
probabilities of each trait and situation relevant 
to the targeted behavior are queried from the 
LLM once and stored. Regardless of the number 
of agents in the simulation, no further expensive 
LLM queries are required. During the simulation, 
each agent’s current state is fed into the trained 
transformer model, which efficiently predicts 
the agent’s decision. This allows simulating 
heterogeneous agents, each with unique traits 
and contexts at a fraction of the computational 
cost of repeated LLM queries.

Recent research has explored methods to make 
LLM-based multi-agent simulations more com-
putationally efficient. [1] and [2] address the 
high computational cost of simulating large 
numbers of LLM agents by grouping agents into 
representative clusters and assigning group-
level decisions in-stead of querying each agent 
individually. However, these approaches are 
validated only at the macro level. Moreover, 
their simplifications reduce individuality, making 
it difficult to capture interactions with the 
environment.
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