
Towards Scalable Multi-Agent Simulations:
Predicting LLM-Agent Responses

[1] Chopra A. et al. (2025). On the Limits of Agency in
Agent-based Models. AAMAS 2025.
DOI: 10.5555/3709347.3743565
[2] Yan et al. (2024). OpenCity: A Scalable Platform to
Simulate Urban Activities with Massive LLM Agents.
DOI: 10.48550/arXiv.2410.21286

References

1. Integrate the model into the SOH simulation
environment.

2. Investigate whether the model can predict
alternative, similar actions by leveraging the
similarity between actions in relation to
traits and situations.

Next Steps

Large Language Model (LLM) agents can
simulate realistic, human-like decision-
making. This makes them a promising tool
for exploring diverse urban scenarios and
stakeholder behaviors. However, LLM
agents are computationally expensive and
do not scale well to large populations. This
project investigates an alternative app-
roach that approximates the behavior of
LLM agents, enabling scalable multi-agent
simulations of complex environments.

Motivation

To simulate realistic urban dynamics, we
use a simulation framework with a detai-
led, city-scale scenario. The MARS (Multi-
Agent Research & Simulation) framework
provides the general infrastructure for
multi-agent simulations. It offers a spatial-
ly and temporally structured environment
where agents can perceive, act, and inter-
act. The Smart Open Hamburg (SOH) sce-
nario, models the mobility behavior of ur-
ban agents in the city of Hamburg. The
SOH scenario defines the city’s geography,
infrastructure, and activity patterns, ena-
bling agents to exhibit realistic, human-like
mobility.

Environment

Methods

Agent Decision Depends on Traits

2. Training

To investigate whether the probability of an agent’s decision can be predicted from individual traits and situational factors, an
encoder-only transformer model will be developed. The model receives both the modular probabilities and the semantic
representations of the selected traits and situations as input, and predicts the combined scenario probability as output.

Figure 1. Simulation of Agents at Hamburg Central Station

Situation: ice cream
truck nearby

Related Work

Contact
Ersan Baran (M.Sc)
Ersan.Baran@haw-hamburg.de

Trait: likes treats→ Action: buys ice cream Trait: dislikes treats→ Action: walks away

3. Inference

1. Data Generation

4. Architecture Optimization

- Define situations S, agent traits T and action a
- Prompt structure (simplified): Given selected traits T′, selected
 situations S′, and an action a, return the probability of a
- Generate LLM responses for each individual trait or situation
- Generate LLM responses for the full scenarios
- Store all inputs, and corresponding LLM outputs as structured data

Stored Data
LLMPrompts

Stored Data

- Train an encoder-only transformer on the structured dataset:
- Input x: modular probabilities + embeddings of selected
 traits T′ and situations S′
- Target y: LLM’s combined scenario probability

Input x

Target y

Transformer

MSE

Loss

- Use the trained encoder-only transformer to predict the
 combined scenario probability
- Input x: modular probabilities + embeddings of new

combinations of T′ and situations S′
- Store inference results

Inference results
Input x Transformer

- Compare inference results across different model
 configurations
- Adjust architecture parameters (e.g., number of layers,
 attention heads, hidden size) based on performance
- Repeat training and inference until the model accurately
 captures the interaction between T′, S′, and a, and the
 best architecture is identified
- The best architecture minimizes the prediction error:
 L=MSE(𝑷𝑻𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒆𝒓(a ∣ T′,S′), 𝑷𝑳𝑳𝑴(a ∣ T′,S′))

Case study: SOH
At the start of the simulation, the modular
probabilities of each trait and situation relevant
to the targeted behavior are queried from the
LLM once and stored. Regardless of the number
of agents in the simulation, no further expensive
LLM queries are required. During the simulation,
each agent’s current state is fed into the trained
transformer model, which efficiently predicts
the agent’s decision. This allows simulating
heterogeneous agents, each with unique traits
and contexts at a fraction of the computational
cost of repeated LLM queries.

Recent research has explored methods to make
LLM-based multi-agent simulations more com-
putationally efficient. [1] and [2] address the
high computational cost of simulating large
numbers of LLM agents by grouping agents into
representative clusters and assigning group-
level decisions in-stead of querying each agent
individually. However, these approaches are
validated only at the macro level. Moreover,
their simplifications reduce individuality, making
it difficult to capture interactions with the
environment.

	Folie 1

